Home
Class 11
MATHS
(d)/(dx)log(a)x=(1)/(x)log(a)e...

(d)/(dx)log_(a)x=(1)/(x)log_(a)e

Promotional Banner

Similar Questions

Explore conceptually related problems

The differentiation of log_(a)x(a>0,a)*!=1 with respect to x is (1)/(x log_(a)a) i.e.(d)/(dx)(log_(a)x)=(1)/(x log_(a)a)

(d)/(dx){log_(e)(ax)^(x)}

if (d)/(dx)(log_(e)x)=(1)/(x) then (d)/(dx)(log_(10)x)

If (d)/(dx)(log_(e)x)=(1)/(x) then (d)/(dx)(log_(10)x)=

d/(dx)log_|x|e=

d/(dx)log_|x|e=

The differentiation of log _(e)x,x>0is(1)/(x)* i.e.(d)/(dx)(log_(e)x)=(1)/(x)

(d)/(dx)(e^(log_(e)x^(3)))

If (d)/(dx)[log_(10)(log_(10)x)]=(log_(10)e)/(f(x))," then "f(x)=

(d)/(dx)log_(7)(log_(7)x)= (a) (1)/(x log_(e)x) (b) (log_(e)7)/(x log_(e)x) (c) (log_(7)e)/(x log_(e)x) (d) (log_(7)e)/(x log_(7)x)