Home
Class 9
MATHS
If y=3^(1/3)+3,then y^3-9y^2+27 y=...

If `y=3^(1/3)+3`,then `y^3-9y^2+27 y=`____

Promotional Banner

Similar Questions

Explore conceptually related problems

If y^(1/3) + y^(-1/3) = 2x, prove that (x^2 - 1)y_2 + xy_1 = 9y .

If x = log_(3)27 and y = log_(9)27 then 1/x + 1/y = ______

27x^(3)y^(3)-45x^(4)y^(2)

If y^(3)-y=2x, then (x^(2)-(1)/(27))(d^(2)y)/(dx^(2))+x(dy)/(d)=y b.(y)/(3) c.(y)/(9) d.(y)/(27)

If y=root(3)(3)+(1)/(root(3)(3)), then the value of 3y^(3)-9y is:

If y=root(3)(3)+(1)/(root(3)(3)), then the value of 3y^(3)-9y is:

If 3(5-y)=4(3y+2)+27 ,then the value of y is.

IF y=cos^2((3x)/2)-sin^2((3x)/2) ,then (d^2y)/(dx^2) is: a) -3sqrt(1-y^2) b) 9y c) 3sqrt(1-y^2) d) -9y

Multiply (x^(2/3)+3x^(1/3).y^(1/3)+9y^(2/3)) by (x^(1/3)-3y^(1/3))