Home
Class 12
MATHS
cos^(2)((pi)/(4)-theta)+cos^(2)((pi)/(4)...

cos^(2)((pi)/(4)-theta)+cos^(2)((pi)/(4)+theta)=

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: cos^(2)((pi)/(4)-theta)-sin^(2)((pi)/(4)-theta)=s in2 theta

If cos^(3) theta + cos^(3)((2pi)/(3) + theta) + cos^(3)((4pi)/(3) + theta) = a cos 3 theta , then a =

The maximum value of 1+sin((pi)/(4) +theta) +2cos((pi)/(4) - theta) for all real values of theta is :

If : sin^(2) ((pi)/(4) + (theta)/(2)) - cos^(2) ((pi)/(4) + (theta)/(2))= A) sin theta B) cos theta C) sin 2 theta D) cos 2 theta

I : If sin((pi)/(4)cot theta)=cos ((pi)/(4)tan theta) then theta = n pi+pi//4, n in Z II : If tan ((pi)/(2)sin theta)=cot((pi)/(2)cos theta) then sin (theta + (pi)/(4))= pm (1)/(sqrt(2))

Cos^(2)(pi/4-theta/2)-sin^(2)(pi/4-theta/2)=

The maximum value of 1+sin((pi)/(4)+theta)+2cos((pi)/(4)-theta) for real values of theta is

The maximum value of 1+sin((pi)/(4)+theta)+2cos((pi)/(4)-theta) for real values of theta is