Home
Class 11
MATHS
lim(h->0) (e^((x+h)^2)-e^(x^2))/h...

`lim_(h->0) (e^((x+h)^2)-e^(x^2))/h`

Text Solution

Verified by Experts

`lim_(h->0)((e^(x+h)^2-e^x^2)/h)`
`lim_(h->0)((e^(x+h)^2*2(x+h)-0)/1)`
`(e^x^2*2x-0)/1`
`2xe^x^2`.
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(h to 0) (e^((x+h)^(2))-e^(x^(2)))/(h) is -

Evaluate: lim_(h rarr 0) (e^((x+h)^(2))-e^(x^(2)))/(h)

If l_(1)=(d)/(dx)(e^(sinx)) l_(2)lim_(hto0) (e^(sin(x+h))-e^(sinx))/(h) l_(3)=inte^(sinx)cosxdx then which one of the following is correct?

If u=(d)/(dx)(e^(sinx)),v=lim_(hrarr0) (e^(sin(x+h))-e^(sinx))/(h) and w=inte^(sinx)cosxdx, then

people living at Mars ,instead of the usual definition of derivative Df(x) define a new kind of derivative Df(x) by the formula Df(x)=lim_(h->0) (f^2(x+h)-f^2(x))/h where f^x means [f(x)]^2. If f(x)=xInx then Df(x)|_(x=e) has the value (a) e (b) 2e (c) 4e (d) non

l_(1)=(d)/(dx)(e^(tanx)) l_(2)=lim_(h to 0)(e^(sin(x+h)-e^(sinx)))/(h) l_(3)=inte^(sinx)cosxdx , then which one of the following is correct ?

Instead of the usual definition of derivative Df(x), if we define a new kind of derivative D^*F(x) by the formula D*f(x)=lim_(h->0)(f^2(x+h)-f^2(x))/h ,w h e r ef^2(x) mean [f(x)]^2 and if f(x)=xlogx ,then D^*f(x)|_(x=e) has the value (A)e (B) 2e (c) 4e (d) none of these

Instead of the usual definition of derivative Df(x), if we define a new kind of derivative D^*F(x) by the formula D*f(x)=lim_(h->0)(f^2(x+h)-f^2(x))/h ,w h e r ef^2(x) mean [f(x)]^2 and if f(x)=xlogx ,then D^*f(x)|_(x=e) has the value (A)e (B) 2e (c) 4e (d) none of these

Instead of the usual definition of derivative Df(x), if we define a new kind of derivative D^*F(x) by the formula D*f(x)=lim_(h->0)(f^2(x+h)-f^2(x))/h ,w h e r ef^2(x) mean [f(x)]^2 and if f(x)=xlogx ,then D^*f(x)|_(x=e) has the value (A)e (B) 2e (c) 4e (d) none of these

Instead of the usual definition of derivative Df(x), if we define a new kind of derivative D^*F(x) by the formula D*f(x)=lim_(h->0)(f^2(x+h)-f^2(x))/h ,w h e r ef^2(x) mean [f(x)]^2 and if f(x)=xlogx ,then D^*f(x)|_(x=e) has the value (A)e (B) 2e (c) 4e (d) none of these