Home
Class 11
MATHS
If f(x)=x^3,show that inta^bf(x)dx=(b-a)...

If `f(x)=x^3`,show that `int_a^bf(x)dx=(b-a)/6{f(a)+4f((a+b)/2)+f(b)}`.

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(a)^(b)f(x)dx=F(b)-F(a) .

If (x) is of the form f(x)=a+b x+c x^2, show that int_0^1f(x)dx=1/6{f(0)+4f(1/2)+f(1)}

If f(a+b-x) = f(x), then int_a^b xf(x) dx =

If f(a+b-x)=f(x)," then "int_(a)^(b)xf(x)dx=

If f(a+b-x)=f(x) , then int_(a)^(b)x f(x)dx=

int_(a)^(b)f(x)dx=int_(b)^(a)f(x)dx .

If f(a+b-x)=f(x) , then prove that int_a^b xf(x)dx=((a+b)/2)int_a^bf(x)dxdot

Prove that int_(a)^(b)(f(x))/(f(x)+f(a+b-x)) dx=(b-a)/(2) .

int_(a)^(b)(f(x)dx)/(f(x)+f(a+b-x))=(1)/(2)(b-a)