Home
Class 11
MATHS
lim(x->oo)int0^x{1/(sqrt(1+t^2))-1/(1+t)...

`lim_(x->oo)int_0^x{1/(sqrt(1+t^2))-1/(1+t)}dt=`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr oo)int_(0)^(x){(1)/(sqrt(1+t^(2)))-(1)/(1+t)}dt=

The value of lim_(x->oo)(int_0^x(tan^(-1)x)^2)/(sqrt(x^2+1))dx

Calculate the reciprocal of the limit lim_(x->oo) int_0^x xe^(t^2-x^2) dt

The value of (lim)_(x->0)1/(x^3)int_0^x(t ln(1+t))/(t^4+4)dt is a. 0 b. 1/(12) c. 1/(24) d. 1/(64)

int_(0)^(1)t^(5)*sqrt(1-t^(2))*dt

Given that lim_(x to oo)(int_(0)^(x)(t^(2))/(sqrt(a+t))dt)/(bx-sinx) = 1 , then find the values of a and b.

int_(0)^(1)t^(2)sqrt(1-t)*dt

lim_(xto oo) (int_(0)^(x)tan^(-1)dt)/(sqrt(x^(2)+1)) is equal to

lim_(xto oo) (int_(0)^(x)(tan^(-1)t)^2dt)/(sqrt(x^(2)+1)) has the value a)zero (b) pi/4 (c) 1 (d) (pi^2)/4