Home
Class 11
MATHS
lim(x->oo)int0^x{1/(sqrt(1+t^2))-1/(1+t)...

`lim_(x->oo)int_0^x{1/(sqrt(1+t^2))-1/(1+t)}dt=`________.

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr oo)int_(0)^(x){(1)/(sqrt(1+t^(2)))-(1)/(1+t)}dt=

int_(0)^(1)t^(5)*sqrt(1-t^(2))*dt

The value of lim_(x->oo)(int_0^x(tan^(-1)x)^2)/(sqrt(x^2+1))dx

int_(0)^(1)t^(2)sqrt(1-t)*dt

The value of (lim)_(x->0)1/(x^3)int_0^x(t ln(1+t))/(t^4+4)dt is a. 0 b. 1/(12) c. 1/(24) d. 1/(64)

lim_(xto oo) (int_(0)^(x)tan^(-1)t\ dt)/(sqrt(x^(2)+1)) is equal to

lim_(xto oo) (int_(0)^(x)tan^(-1)t\ dt)/(sqrt(x^(2)+1)) is equal to

lim_(x rarr1^(+))int_(x)^(4)(sqrt(t)+3)/(sqrt(t-1))dt

The value of lim_(x->0) cosec^4 x int_0^(x^2) (ln(1 +4t))/(t^2+1) dt is

lim_(xto oo) (int_(0)^(x)tan^(-1)dt)/(sqrt(x^(2)+1)) is equal to