Home
Class 11
MATHS
int- 2^2(p x^3+q x+r)dx , where p,q,r ar...

`int_- 2^2(p x^3+q x+r)dx , where p,q,r` are constant, depends on the value of

Promotional Banner

Similar Questions

Explore conceptually related problems

Let I=int_(-a)^(a) (p tan^(3) x + q cos^(2)x + r sin x)dx , where p, q, r are arbitrary constants. The numerical value of I depends on:

Let I=int_(-a)^(a) (p tan^(3) x + q cos^(2)x + r sin x)dx , where p, q, r are arbitrary constants. The numerical value of I depends on:

Let int dx/(x^(2008)+x) = 1/p In((x^(q))/(1+x^(r)))+C where p,q,r in N and need not be distinct, then the value of ((p+q)/r) equals

int (dx)/(x ^(2014)+x)=1/p ln ((x ^(q))/(1+ x ^(r)))+C where p,q r in N then the value of (p+q+r) equals (Where C is constant of integration)

int (dx)/(x ^(2014)+x)=1/p ln ((x ^(q))/(1+ x ^(r)))+C where p,q r in N then the value of (p+q+r) equals (Where C is constant of integration)

int_( Is )^( If )sin^(-(1)/(11))(x)*cos^(-(21)/(11))(x)dx=(p)/(20)tan^((9)/(r))x+c where p,q,r and c are constants,then p+q-r equals (where q and r are co-prime natural numbers)