Home
Class 12
MATHS
If x=sint and y=sinp t , prove that (1-x...

If `x=sint` and `y=sinp t ,` prove that `(1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)+p^2y=0.`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=sint ,y=sinp t ,"p r o v et h a t" (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)+p^2y=0.

If x=sint ,y=sinpt , prove that (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)+p^2y=0.

If x=sin t and y=sin pt, prove that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)+p^(2)y=0

If x=sint,y=sinpt , prove that (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)+p^2 y=0 .

If y=sin^(-1) x, prove that (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)=0

If x=sin t,y=sin2t, prove that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)+4y=0

If y=sin^(-1)x, prove that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)=0

If y=sin^(-1)x then prove that (1-x^(2))(d^(y))/(dx^(2))-x(dy)/(dx)=0

If y="sin"(logx), then prove that (x^2d^2y)/(dx^2)+x(dy)/(dx)+y=0

If y=sin(logx) , prove that x^2(d^2y)/(dx^2)+x(dy)/(dx)+y=0 .