Home
Class 12
MATHS
theta(1),theta(2),theta(3) are angles of...

`theta_(1),theta_(2),theta_(3)` are angles of `1^(st)` quadrant if `tan theta_(1) = cos theta_(1), tan theta_(2) = cosec theta_(2), cos theta_(3)=theta_(3)`. Which of the following is not true ?

Promotional Banner

Similar Questions

Explore conceptually related problems

If Tan theta_(1)=k cot theta_(2) then (cos (theta_(1)+theta_(2)))/(cos (theta_(1)-theta_(2)))=

if tan theta_(1)=k cot theta_(2) then find (cos(theta_(1)-theta_(2)))/(cos(theta_(1)+theta_(2)))=

If tan theta_(1).tantheta_(2)=k , then: (cos(theta_(1)-theta_(2))/(cos(theta_(1)+theta_(2)))=

If sin theta_(1)+sin theta_(2)+sin theta_(3)=3 then cos theta_(1)+cos theta_(2)+cos theta_(3)=

If Sin theta_(1) + Sin theta_(2) + Sin theta_(3) = 3 then Cos theta_(1) + Cos theta_(2) + Cos theta_(3) =

If sintheta_(1)+sintheta_(2)+sintheta_(3)=3, then cos theta_(1)+cos theta_(2)+cos theta_(3)=

If sintheta_(1)+sintheta_(2)+sintheta_(3)=3, then cos theta_(1)+cos theta_(2)+cos theta_(3)=

If sintheta_(1)+sintheta_(2)+sintheta_(3)=3 , then cos theta_(1)+cos theta_(2)+cos theta_(3)=

Prove that: sin theta(1+ tan theta) + cos theta (1+ cot theta) = sec theta + "cosec" theta

Prove that : (tan theta)/(1 -cot theta) + (cot theta)/(1- tan theta) = 1 + cos theta cosec theta