Home
Class 11
MATHS
If z(2 - i2sqrt3)^2 = i(sqrt3 + i)^4, th...

If `z(2 - i2sqrt3)^2 = i(sqrt3 + i)^4,` then amplitude of `z` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If z(2-i2sqrt(3))^(2)=i(sqrt(3)+i)^(4), then amplitude of z is

If z (2- 2 sqrt3i)^(2)= i(sqrt3+i)^(4) , then arg(z)=

If z(2-2sqrt(3i))^2=i(sqrt(3)+i)^4, then a r g(z)=

If z(2-2sqrt(3i))^(2)=i(sqrt(3)+i)^(4), then arg(z)=

If z(2-2 sqrt(3) i)^(2)=i(sqrt(3)+i)^(4) then arg z=

Find the amplitude of (-2-i2sqrt3) and (sqrt3-i) .Hence find the amplitude of (-2-i2sqrt3)/(sqrt3-i)

If Z=(sqrt3+i)/2 ,then the value of z^69 is

If z = (-4 +2 sqrt3i)/(5 +sqrt3i) , then the value of arg(z) is

If z = (-4 +2 sqrt3i)/(5 +sqrt3i) , then the value of arg(z) is

If z=(sqrt(3)+i)/(sqrt(3)-i) , then the fundamental amplitude of z is :