Home
Class 11
MATHS
A point z moves on the curve |z-1|+|z-5...

A point z moves on the curve `|z-1|+|z-5-4i|=5.` Then the value of `|z|_max -|z|_min` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If |(z-25)/(z-1)| = 5 , the value of |z| is -

If |(z-25)/(z-1)| = 5 , the value of |z| is -

If |(z-25)/(z-1)| = 5 , the value of |z| is -

A point z moves on the curve |z-4-3i| =2 in an argand plane. The maximum and minimum values of z are

A point z moves on the curve |z-4-3i|=2 in an argand plane.The maximum and minimum values of z are

z=i^5 then the value of (z+z^2+z^3+z^4)

If | (z - i)/(z + 2i)| = 1, |z| = 5/2 then the value of |z + 3i|

If | (z - i)/(z + 2i)| = 1, |z| = 5/2 then the value of |z + 3i|

If | (z - i)/(z + 2i)| = 1, |z| = 5/2 then the value of |z + 3i|