Home
Class 12
MATHS
" Value of "int(1+x+x^(2))/(1+x^(2))e^(t...

" Value of "int(1+x+x^(2))/(1+x^(2))e^(tan^(-1)x)dx" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

int((1+x+x^(2))/( 1+x^(2))) e^(tan^(-1)x) dx is equal to

The value of int(e^(x)((1+x^(2))tan^(-1)x+1))/(x^(2)+1)dx is equal to

The value of inte^(tan^(-1)x)((1+x+x^(2)))/((1+x^(2)))dx is

int (e^(x))/((1 + e^(2x)) tan^(-1) (e^(x)) ) dx =

The value of int e^(tan-1)x((1+x+x^(2))/(1+x^(2)))dx

int (1 + tan^(2) x)/(1 -tan^(2) x) dx =

The value of int(e^(x)(x^(2)tan^(-1)x+tan^(-1)x+1))/(x^(2)+1)dx is equal to

The value of int(e^(x)(x^(2)tan^(-1)x+tan^(-1)x+1))/(x^(2)+1)dx is equal to

The value of int_0^(1) tan^(-1) ((2x-1)/(1+x-x^(2))) dx is

The value of int_(0)^(1) tan^(-1)((2x-1)/(1+x-x^(2)))dx is