Home
Class 10
MATHS
f(x)=ln(x-[x])," where "[....

f(x)=ln(x-[x])," where "[.

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=log(x-[x]) , where [*] denotes the greatest integer function. find the domain of f(x).

f(x)=log(x-[x]) , where [*] denotes the greatest integer function. find the domain of f(x).

f(x)=log(x-[x]) , where [*] denotes the greatest integer function. find the domain of f(x).

f(x)=log(x-[x]) , where [*] denotes the greatest integer function. find the domain of f(x).

The range of function f(x)=log_(x)([x]), where [.] and {.} denotes greatest integer and fractional part function respectively

let A be the greatest value of the function f(x)=log _(x) [x], (where [.] denotes gratest integer function) and B be the least value of the function g (x) = |sin x | +|cos x| , then :

let A be the greatest value of the function f(x)=log _(x) [x], (where [.] denotes gratest integer function) and B be the least value of the function g (x) = |sin x | +|cos x| , then :

Let A be the greatest value of the function f(x)=log_(x)[x], (where) denotes greatest integer function) and B be the least value of the function g(x)=|sin x|+|cos x|, then:

Find the domain of the function f(x)=log_(e)(x-[x]) , where [.] denotes the greatest integer function.

Find the domain of the function f(x)=log_(e)(x-[x]) , where [.] denotes the greatest integer function.