Home
Class 11
PHYSICS
A disc of mass M and radius R is rolling...


A disc of mass `M` and radius `R` is rolling purely with centre's velcity `v_(0)` on a flat horizontal floor when it hits a step in the floor of height `R//4` The corner of the step is sufficiently rough to prevent any slippoing of the disc against itself. What is the velocity of the centre of the disc just after impact?

Promotional Banner

Similar Questions

Explore conceptually related problems

A uniform disc of mass m and radius R is projected horizontally with velocity v_(0) on a rough horizontal floor so that it starts with a purely sliding motion at t= 0. After t_(0) seconds it acquires a purely rolling motion. (a) Calculate the velocity of the centre of mass of the disc at t_(0) (b) Assuming the coefficient of friction to be mu , calculate to. Also calculate the work done by the frictional force as a function of time and the total work done by it over a time t muchlonger than t_(0) .

A uniform disc of mass m and radius R is projected horizontally with velocity v_(0) on a rough horizontal floor so that it starts off with a purely sliding motion at t=0 . After t_(0) seconds, it acquires pure rolling motion as shown in the figure. (a) Calculate the velocity of the center of mass of the disc at t_(0) . Assuming that the coefficent of friction to be mu , calculate t_(0) .

A uniform disc of mass m and radius R is projected horizontally with velocity v_(0) on a rough horizontal floor so that it starts off with a purely sliding motion at t=0 . After t_(0) seconds, it acquires pure rolling motion as shown in the figure. (a) Calculate the velocity of the center of mass of the disc at t_(0) . Assuming that the coefficent of friction to be mu , calculate t_(0) .

A disc of radius 0.2 m is rolling with slipping on a flat horizontal surface, as shown in Fig. The instantaneous centre of rotation is (the lowest contact point is O and centre of disc is C )

A disc of radius 0.2 m is rolling with slipping on a flat horizontal surface, as shown in Fig. The instantaneous centre of rotation is (the lowest contact point is O and centre of disc is C )

A disc of radius R is rolling purely on a flat horizontal surface, with a constant angular velocity. The angle between the velocity and acceleration vectors of point P is .

A disc of radius R is rolling purely on a flat horizontal surface, with a constant angular velocity the angle between the velocity ad acceleration vectors of point P is

A disc of radius R is rolling purely on a flat horizontal surface, with a constant angular velocity. The angle between the velocity ad acceleration vectors of point P is

A disc of radius R is rolling purely on a flat horizontal surface, with a constant angular velocity. The angle between the velocity and acceleration vectors of point P is .