Home
Class 12
MATHS
Prove that : tan^(-1) x + cot^(-1) (1+x)...

Prove that : `tan^(-1) x + cot^(-1) (1+x) = tan^(-1) (1+x+x^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : (i) tan^(-1) x + cot^(-1)( x+1) = tan^(-1) (x^(2)+x+1) (ii) cot^(-1) 3 + "cosec"^(-1) sqrt(5) = pi/4

Prove that tan^(-1) x + cot^(-1) (x+1) = tan ^(-1) (x^(2) + x+1) .

Prove that tan^(-1) x + cot^(-1) (x+1) = tan ^(-1) (x^(2) + x+1) .

tan ^(-1)x+cot^(-1)(x+1) = tan ^(-1) (1+x+x^(2))

Prove that : tan^(-1) x+cot^(-1) y = tan^(-1) ((xy+1)/(y-x))

Prove that : tan^(-1) x+cot^(-1) y = tan^(-1) ((xy+1)/(y-x))

Prove that : tan^-1 x + cot^-1(x+1) = tan^-1(x^2 + x +1)

prove that tan^(-1)x+cot^(-1)x=pi/2

Prove that: tan^(-1)x+tan^(-1)(1/x)=pi/2

Prove that , tan^(-1)(cotx)+cot^(-1) (tan x) = pi-2x