Home
Class 11
MATHS
The range of the function f(x)=(x+2)/(|x...

The range of the function `f(x)=(x+2)/(|x+2|),\ x!=-2`

A

`{-1,1}`

B

`{-1,0,1}`

C

`{1}`

D

`(0,oo)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( f(x) = \frac{x + 2}{|x + 2|} \) where \( x \neq -2 \), we can analyze the function based on the properties of the absolute value. ### Step 1: Understand the Absolute Value The absolute value function \( |x + 2| \) behaves differently based on the value of \( x + 2 \): - If \( x + 2 \geq 0 \) (i.e., \( x \geq -2 \)), then \( |x + 2| = x + 2 \). - If \( x + 2 < 0 \) (i.e., \( x < -2 \)), then \( |x + 2| = -(x + 2) = -x - 2 \). ### Step 2: Define the Function in Two Cases We will split the function into two cases based on the value of \( x \): 1. **Case 1:** \( x > -2 \) - Here, \( |x + 2| = x + 2 \). - Thus, \( f(x) = \frac{x + 2}{x + 2} = 1 \) (for \( x > -2 \)). 2. **Case 2:** \( x < -2 \) - Here, \( |x + 2| = - (x + 2) = -x - 2 \). - Thus, \( f(x) = \frac{x + 2}{-x - 2} = -1 \) (for \( x < -2 \)). ### Step 3: Determine the Range From the two cases: - For \( x > -2 \), \( f(x) = 1 \). - For \( x < -2 \), \( f(x) = -1 \). Since \( x \neq -2 \), the function does not take any other values. Therefore, the range of the function is: \[ \text{Range} = \{1, -1\} \] ### Conclusion The range of the function \( f(x) = \frac{x + 2}{|x + 2|} \) where \( x \neq -2 \) is \( \{-1, 1\} \). ---

To find the range of the function \( f(x) = \frac{x + 2}{|x + 2|} \) where \( x \neq -2 \), we can analyze the function based on the properties of the absolute value. ### Step 1: Understand the Absolute Value The absolute value function \( |x + 2| \) behaves differently based on the value of \( x + 2 \): - If \( x + 2 \geq 0 \) (i.e., \( x \geq -2 \)), then \( |x + 2| = x + 2 \). - If \( x + 2 < 0 \) (i.e., \( x < -2 \)), then \( |x + 2| = -(x + 2) = -x - 2 \). ### Step 2: Define the Function in Two Cases ...
Promotional Banner

Topper's Solved these Questions

  • ELLIPSE

    RD SHARMA|Exercise Solved Examples And Exercises|97 Videos
  • GEOMETRIC PROGRESSIONS

    RD SHARMA|Exercise Solved Examples And Exercises|255 Videos

Similar Questions

Explore conceptually related problems

Range of the function f(x)=(x+2)/(|x+2|) is

The range of the function f(x)=(x-2)/(2-x) is

The range of the function f(x)=(2+x)/(2-x),x!=2 is

Range of the function f(x)=(x)/(1+x^(2)) is

The range of the function f(x)=(x^(2)-x)/(x^(2)+2x)

The range of the function f(x)=3x^(2)+7x+10 is

Find the domain and the range of the function, f(x)=(x-2)/(x-3) .

Find the range of the function f(x)=(x)/(1+x^(2))

The range of the function f(x)=(x^(2))/(x^(4)+1) is

RD SHARMA-FUNCTIONS-Solved Examples And Exercises
  1. Let A and B be any two sets such that n(B)=P, n(A)=q then the total nu...

    Text Solution

    |

  2. Find the values of x for which the functions f(x)=3x^2-1 and g(x)=3+x ...

    Text Solution

    |

  3. If f(x)="cos"((log)e x),t h e nf(x)f(y)-1/2[f(x/y)+f(x y)] has value ...

    Text Solution

    |

  4. Let f(x)=|x-1|dot Then (a)f(x^2)=(f(x))^2 (b) f(x+y)=f(x)+f(y) (c)f(...

    Text Solution

    |

  5. If A={1,2,3},\ B={x , y} , then the number of functions that can be de...

    Text Solution

    |

  6. If x!=1\ a n d\ f(x)=(x+1)/(x-1) is a real function, then f(f(f(2))) ...

    Text Solution

    |

  7. If f: R->R : x!=0,\ -4lt=xlt=4 and f: A->A be defined by f(x)=(|x|)/x ...

    Text Solution

    |

  8. If f: RrarrR and g: RrarrR are defined by f(x)=2x+3a n dg(x)=x^2+7, th...

    Text Solution

    |

  9. If f: [-2, 2] -> R is defined by f(x)={-1,for -2<=x<=0 , then x...

    Text Solution

    |

  10. If f(x)=64x^3+1/x^3 and alpha,beta are the roots of 4x+1/x=3. Then,f(a...

    Text Solution

    |

  11. The domain of the function f(x)=sqrt(2-2x-x^2) is [-sqrt(3),\ sqrt(3)...

    Text Solution

    |

  12. The domain of the function f(x)=sqrt[((x+1)(x-3))/(x-2)] is [-1,2)uu[3...

    Text Solution

    |

  13. The domain of the function f(x)=sqrt(((x+1)(x-3))/(x-2)) is [-1,2)uu[3...

    Text Solution

    |

  14. The domain of definition of the function f(x)=sqrt(x-1)+sqrt(3-x) is [...

    Text Solution

    |

  15. The domain of definition of the function f(x)=sqrt((x-2)/(x+2))+sqrt((...

    Text Solution

    |

  16. The domain of definition of the function f(x)="log"|x| is R b. (-oo...

    Text Solution

    |

  17. The domain of definition of f(x)=sqrt[x-3-2sqrt(x-4)]-sqrt[x-3+2sqrt(x...

    Text Solution

    |

  18. The domain of the function f(x)=sqrt(5|x|-x^2-6) is (a) (-3,\ -2)uu(...

    Text Solution

    |

  19. The range of the function f(x)=(x+2)/(|x+2|),\ x!=-2

    Text Solution

    |

  20. The range of the function f(x)=x/(|x|) is R-{0} b. R-{-1,1} c. {-1,1}...

    Text Solution

    |