Home
Class 11
MATHS
The range of the function f(x)=(x+2)/(|x...

The range of the function `f(x)=(x+2)/(|x+2|),\ x!=-2`

A

`{-1,1}`

B

`{-1,0,1}`

C

`{1}`

D

`(0,oo)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( f(x) = \frac{x + 2}{|x + 2|} \) where \( x \neq -2 \), we can analyze the function based on the properties of the absolute value. ### Step 1: Understand the Absolute Value The absolute value function \( |x + 2| \) behaves differently based on the value of \( x + 2 \): - If \( x + 2 \geq 0 \) (i.e., \( x \geq -2 \)), then \( |x + 2| = x + 2 \). - If \( x + 2 < 0 \) (i.e., \( x < -2 \)), then \( |x + 2| = -(x + 2) = -x - 2 \). ### Step 2: Define the Function in Two Cases We will split the function into two cases based on the value of \( x \): 1. **Case 1:** \( x > -2 \) - Here, \( |x + 2| = x + 2 \). - Thus, \( f(x) = \frac{x + 2}{x + 2} = 1 \) (for \( x > -2 \)). 2. **Case 2:** \( x < -2 \) - Here, \( |x + 2| = - (x + 2) = -x - 2 \). - Thus, \( f(x) = \frac{x + 2}{-x - 2} = -1 \) (for \( x < -2 \)). ### Step 3: Determine the Range From the two cases: - For \( x > -2 \), \( f(x) = 1 \). - For \( x < -2 \), \( f(x) = -1 \). Since \( x \neq -2 \), the function does not take any other values. Therefore, the range of the function is: \[ \text{Range} = \{1, -1\} \] ### Conclusion The range of the function \( f(x) = \frac{x + 2}{|x + 2|} \) where \( x \neq -2 \) is \( \{-1, 1\} \). ---

To find the range of the function \( f(x) = \frac{x + 2}{|x + 2|} \) where \( x \neq -2 \), we can analyze the function based on the properties of the absolute value. ### Step 1: Understand the Absolute Value The absolute value function \( |x + 2| \) behaves differently based on the value of \( x + 2 \): - If \( x + 2 \geq 0 \) (i.e., \( x \geq -2 \)), then \( |x + 2| = x + 2 \). - If \( x + 2 < 0 \) (i.e., \( x < -2 \)), then \( |x + 2| = -(x + 2) = -x - 2 \). ### Step 2: Define the Function in Two Cases ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • ELLIPSE

    RD SHARMA|Exercise Solved Examples And Exercises|97 Videos
  • GEOMETRIC PROGRESSIONS

    RD SHARMA|Exercise Solved Examples And Exercises|255 Videos

Similar Questions

Explore conceptually related problems

Range of the function f(x)=(x+2)/(|x+2|) is

The range of the function f(x)=(2+x)/(2-x),x!=2 is

Knowledge Check

  • The range of the function f(x)=(x-2)/(2-x) is

    A
    R
    B
    R - {1}
    C
    {-1}
    D
    R - { - l}
  • The range of the function f(x) = x^2 + 2x + 2 is

    A
    `(1,infty)`
    B
    `(2,infty)`
    C
    `(0,infty)`
    D
    `[1,infty)`
  • Similar Questions

    Explore conceptually related problems

    Range of the function f(x)=(x)/(1+x^(2)) is

    The range of the function f(x)=(x^(2)-x)/(x^(2)+2x)

    The range of the function f(x)=3x^(2)+7x+10 is

    Find the domain and the range of the function, f(x)=(x-2)/(x-3) .

    Find the range of the function f(x)=(x)/(1+x^(2))

    The range of the function f(x)=(x^(2))/(x^(4)+1) is