Home
Class 11
MATHS
Prove the following identity: (secA secB...

Prove the following identity: `(secA secB + tanA tanB)^2 - (secA tanB+ tanA secB)^2=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

tanA +tanB + tanC = tanA tanB tanC if

(cot A+tanB)/(cotB+tanA) is :

Prove that : (secA+1)/(tanA)=(tanA)/(secA-1)

Prove that : (secA-tanA)/(secA+tanA)=1-2secAtanA+2tan^(2)A

The value of (secA + tanA-1) (sec A -tanA+1) -2tanA is equal to

Prove that: (tanA + tanB)/(cotA+cotB)=tanAtanB

Prove that sqrt[(1+sinA)/(1 - sinA)] = secA + tanA

If p=(secA - tanA) (secB - tanB) (secC - tanC) = (secA + tanA) (secB + tanB)(secC + tanC) , then value of p is:

(tanA)/(1+secA) - (tanA)/(1-secA) = 2cosecA