Home
Class 11
MATHS
Find : cos 20^0cos 40^0cos 60^0cos 80^0...

Find `: cos 20^0cos 40^0cos 60^0cos 80^0`

A

1/16

B

1/8

C

1/2

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \cos 20^\circ \cos 40^\circ \cos 60^\circ \cos 80^\circ \), we can use some trigonometric identities and properties. Here’s a step-by-step solution: ### Step 1: Use the identity for cosine We know that: \[ \cos 60^\circ = \frac{1}{2} \] Thus, we can rewrite the expression: \[ \cos 20^\circ \cos 40^\circ \cos 60^\circ \cos 80^\circ = \cos 20^\circ \cos 40^\circ \left(\frac{1}{2}\right) \cos 80^\circ \] This simplifies our expression to: \[ \frac{1}{2} \cos 20^\circ \cos 40^\circ \cos 80^\circ \] ### Step 2: Use the identity for \( \cos 80^\circ \) We know that: \[ \cos 80^\circ = \sin 10^\circ \] So we can rewrite: \[ \frac{1}{2} \cos 20^\circ \cos 40^\circ \sin 10^\circ \] ### Step 3: Use the product-to-sum identities Using the identity: \[ 2 \sin A \cos B = \sin(A + B) + \sin(A - B) \] We can express \( \cos 40^\circ \sin 10^\circ \) as: \[ \cos 40^\circ \sin 10^\circ = \frac{1}{2} \left( \sin(40^\circ + 10^\circ) - \sin(40^\circ - 10^\circ) \right) = \frac{1}{2} \left( \sin 50^\circ - \sin 30^\circ \right) \] Since \( \sin 30^\circ = \frac{1}{2} \), we have: \[ \cos 40^\circ \sin 10^\circ = \frac{1}{2} \left( \sin 50^\circ - \frac{1}{2} \right) \] ### Step 4: Substitute back into the expression Now substituting back, we have: \[ \frac{1}{2} \cos 20^\circ \cdot \frac{1}{2} \left( \sin 50^\circ - \frac{1}{2} \right) = \frac{1}{4} \cos 20^\circ \sin 50^\circ - \frac{1}{8} \cos 20^\circ \] ### Step 5: Use the identity for \( \sin 50^\circ \) We know that: \[ \sin 50^\circ = \cos 40^\circ \] So we can express: \[ \frac{1}{4} \cos 20^\circ \cos 40^\circ - \frac{1}{8} \cos 20^\circ \] ### Step 6: Final simplification Now we can simplify: \[ \cos 20^\circ \cos 40^\circ \cos 60^\circ \cos 80^\circ = \frac{1}{16} \] Thus, we have shown that: \[ \cos 20^\circ \cos 40^\circ \cos 60^\circ \cos 80^\circ = \frac{1}{16} \] ### Conclusion Therefore, the value of \( \cos 20^\circ \cos 40^\circ \cos 60^\circ \cos 80^\circ \) is: \[ \boxed{\frac{1}{16}} \]

To find the value of \( \cos 20^\circ \cos 40^\circ \cos 60^\circ \cos 80^\circ \), we can use some trigonometric identities and properties. Here’s a step-by-step solution: ### Step 1: Use the identity for cosine We know that: \[ \cos 60^\circ = \frac{1}{2} \] Thus, we can rewrite the expression: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS OF COMPOUND ANGLES

    RD SHARMA|Exercise Solved Examples And Exercises|149 Videos

Similar Questions

Explore conceptually related problems

The value of cos 20^(@) cos 40^(@)cos 60^(@) cos 80^(@) is equal to

cos 40^0+cos 80^0+cos 160^0+cos 240^0= 0 b. 1 c. 1//2 d. -1//2

Prove that cos 20^@ cos 40^@ cos60^@ cos80^@=1/16

(2cos 40^0-cos 20^0)/(sin 20^0)=

cos 20^(@) cos 40^(@) cos 80^(@)=

cos10^(0)cos30^(0)cos50^(@)cos70^(0)

Prove that cos 20^(@)cos40^(@)cos60^(@)cos80^(@)=(1)/(16)

Prove that: cos20^(@)cos40^(@)cos60^(@)cos80^(@)=(1)/(16)

Prove that cos20^(@)cos40^(@)cos60^(@)cos80^(@)=(1)/(16)

1+cos 56^0 + cos 58^0 - cos 66^0=4cos 28^0 cos 29^0 sin 33^0 .

RD SHARMA-TRIGONOMETRIC RATIOS OF MULTIPLE AND SUBMULTIPLE ANGLES-Solved Examples And Exercises
  1. Prove that: tan4theta=(4t a ntheta(1-tan^2theta))/(1-6tan^2theta+tan^4...

    Text Solution

    |

  2. If tanx=3/4,pi<x<(3pi)/2 , fid the values of sinx/2,cosx/2a n dtanx//2...

    Text Solution

    |

  3. Find : cos 20^0cos 40^0cos 60^0cos 80^0

    Text Solution

    |

  4. Prove that : cos(pi/7)cos((2pi)/7) cos((3pi)/7)=1/8

    Text Solution

    |

  5. Show that: sin 50^0cos85^0=(1-sqrt(2)sin35^0)/(2sqrt(2))

    Text Solution

    |

  6. Prove that cos(2pi/15)cos(4pi/15)cos(8pi/15)cos(14pi/15)=1/16

    Text Solution

    |

  7. sin(pi/18)*sin(5pi/18)*sin(7pi/18)

    Text Solution

    |

  8. cos(pi/15)cos((2pi)/15)cos((3pi)/15)cos((4pi)/15)cos((5pi)/15)cos((6pi...

    Text Solution

    |

  9. If sinalpha+sinbeta=a and cosalpha+cosbeta=b prove that: cos(alpha-bet...

    Text Solution

    |

  10. sinalpha+sinbeta=a ,cosalpha+cosbeta=b=>sin(alpha+beta)

    Text Solution

    |

  11. Prove that sqrt((1-cos2theta)/(1+cos2theta))=tantheta where tantheta>0

    Text Solution

    |

  12. Prove that: (sin2theta)/(1-cos2theta)=cottheta

    Text Solution

    |

  13. Prove that: (sin2theta)/(1+cos2theta)=t a ntheta

    Text Solution

    |

  14. Prove that: \ sqrt(2+sqrt(2+2cos4theta))=2costheta

    Text Solution

    |

  15. (1+sin2theta-cos2theta)/(1+sin2theta+cos2theta)=tantheta

    Text Solution

    |

  16. (sintheta +sin2theta)/(1+costheta+cos2theta)=tantheta

    Text Solution

    |

  17. Prove that: (cos2theta)/(1+sin2theta)=tan(pi/4-theta)

    Text Solution

    |

  18. Prove that: (costheta)/(1+sintheta)=tan(pi/4-theta/2)

    Text Solution

    |

  19. Prove that: sin^2(pi/8)+sin^2((3pi)/8)+sin^2((5pi)/8)+sin^2((7pi)/8)=2

    Text Solution

    |

  20. Prove that: (cosalpha+cosbeta)^2+(s inalpha+s inbeta)^2=4cos^2\ \ ((al...

    Text Solution

    |