Home
Class 11
MATHS
sin(pi/18)*sin(5pi/18)*sin(7pi/18)...

`sin(pi/18)*sin(5pi/18)*sin(7pi/18)`

Text Solution

Verified by Experts

`\sin \(pi / 8) \sin 5 \pi / 18 \sin 7 \pi / 18`

`=\sin 10^{\circ} \sin 50^{\circ} \sin 70^{\circ}`

`=\frac{1}{2}[\cos 40^{\circ}-\cos 60^{\circ}\] \sin 70^{\circ}`

`=\frac{1}{2} \cos 40^{\circ} \sin 70^{\circ}-\frac{1}{4} \sin 70^{\circ}`

`=\frac{1}{4}[\sin 110^{\circ}+\sin 30^{\circ}\]-\frac{1}{4} \sin 70^{\circ}`

`=\frac{1}{4} \sin \(180^{\circ}-70^{\circ})+\frac{1}{4} \times \frac{1}{2}-\frac{1}{4} \sin 70^{\circ}=\frac{1}{8}`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS OF COMPOUND ANGLES

    RD SHARMA|Exercise Solved Examples And Exercises|149 Videos

Similar Questions

Explore conceptually related problems

sin(pi/18)sin(5 pi/18)sin(7 pi/18)

2sin((pi)/8)sin((2pi)/8)sin((3pi)/8)sin((5pi)/8)sin((6pi)/8)sin((7pi)/8) = ?

The value of 2 sin (pi/8) sin((2pi)/8) sin((3pi)/8) sin ((5pi)/8) sin ((6pi)/8) sin((7pi)/8) is :

If K=sin((pi)/(18))sin((5 pi)/(18))sin((7 pi)/(18)), then the numerical value of K is

sin(pi)/(4)*sin(3 pi)/(4)*sin(5 pi)/(4)*sin(7 pi)/(4)=

Statement I : sin^2pi/8+sin^2(3pi)/8+sin^2(5pi)/8+sin^2(7pi)/8=2 Statement II cos^2pi/8+cos^2(3pi )/8+cos^2(5pi)/8+cos^2(7pi/8)=2 Statement III: sin^2pi/8+sin^(3pi)/8+sin^2(5pi)/8sin^2 (7pi)/8=3/2

The value of sin(pi)/(14)sin(3 pi)/(14)sin(5 pi)/(14)sin(7 pi)/(14)sin(9 pi)/(14)sin(11 pi)/(14)sin(13 pi)/(14) is equal to

RD SHARMA-TRIGONOMETRIC RATIOS OF MULTIPLE AND SUBMULTIPLE ANGLES-Solved Examples And Exercises
  1. Show that: sin 50^0cos85^0=(1-sqrt(2)sin35^0)/(2sqrt(2))

    Text Solution

    |

  2. Prove that cos(2pi/15)cos(4pi/15)cos(8pi/15)cos(14pi/15)=1/16

    Text Solution

    |

  3. sin(pi/18)*sin(5pi/18)*sin(7pi/18)

    Text Solution

    |

  4. cos(pi/15)cos((2pi)/15)cos((3pi)/15)cos((4pi)/15)cos((5pi)/15)cos((6pi...

    Text Solution

    |

  5. If sinalpha+sinbeta=a and cosalpha+cosbeta=b prove that: cos(alpha-bet...

    Text Solution

    |

  6. sinalpha+sinbeta=a ,cosalpha+cosbeta=b=>sin(alpha+beta)

    Text Solution

    |

  7. Prove that sqrt((1-cos2theta)/(1+cos2theta))=tantheta where tantheta>0

    Text Solution

    |

  8. Prove that: (sin2theta)/(1-cos2theta)=cottheta

    Text Solution

    |

  9. Prove that: (sin2theta)/(1+cos2theta)=t a ntheta

    Text Solution

    |

  10. Prove that: \ sqrt(2+sqrt(2+2cos4theta))=2costheta

    Text Solution

    |

  11. (1+sin2theta-cos2theta)/(1+sin2theta+cos2theta)=tantheta

    Text Solution

    |

  12. (sintheta +sin2theta)/(1+costheta+cos2theta)=tantheta

    Text Solution

    |

  13. Prove that: (cos2theta)/(1+sin2theta)=tan(pi/4-theta)

    Text Solution

    |

  14. Prove that: (costheta)/(1+sintheta)=tan(pi/4-theta/2)

    Text Solution

    |

  15. Prove that: sin^2(pi/8)+sin^2((3pi)/8)+sin^2((5pi)/8)+sin^2((7pi)/8)=2

    Text Solution

    |

  16. Prove that: (cosalpha+cosbeta)^2+(s inalpha+s inbeta)^2=4cos^2\ \ ((al...

    Text Solution

    |

  17. Prove that: 1+cos^2 2x=2(cos^4x+sin^4x)

    Text Solution

    |

  18. cos^3 2theta+3cos2theta=4(cos^6theta-sin^6 theta)

    Text Solution

    |

  19. Prove that : (sin3A+sin A)sin A+(cos3A-cos A)cos A=0

    Text Solution

    |

  20. Prove that:cos^2(pi/4-theta)-sin^2(pi/4-theta)=s in2theta

    Text Solution

    |