Home
Class 11
MATHS
Prove that: sin^2(pi/8)+sin^2((3pi)/8)+s...

Prove that: `sin^2(pi/8)+sin^2((3pi)/8)+sin^2((5pi)/8)+sin^2((7pi)/8)=2`

Text Solution

AI Generated Solution

To prove that \[ \sin^2\left(\frac{\pi}{8}\right) + \sin^2\left(\frac{3\pi}{8}\right) + \sin^2\left(\frac{5\pi}{8}\right) + \sin^2\left(\frac{7\pi}{8}\right) = 2, \] we will follow these steps: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS OF COMPOUND ANGLES

    RD SHARMA|Exercise Solved Examples And Exercises|149 Videos

Similar Questions

Explore conceptually related problems

Prove that sin^(4) pi/8+ sin^(4) 3pi/8 + sin^(4) 5pi/8 + sin^(4) 7pi/8 = 3/2 .

sin^(2)(pi)/(4)+sin^(2)(3 pi)/(4)+sin^(2)(5 pi)/(4)+sin^(2)(7 pi)/(4)=2

Statement I : sin^2pi/8+sin^2(3pi)/8+sin^2(5pi)/8+sin^2(7pi)/8=2 Statement II cos^2pi/8+cos^2(3pi )/8+cos^2(5pi)/8+cos^2(7pi/8)=2 Statement III: sin^2pi/8+sin^(3pi)/8+sin^2(5pi)/8sin^2 (7pi)/8=3/2

4.Prove that sin^(2)((pi)/(8))+sin^(2)((3 pi)/(8))=1

The value of 2 sin (pi/8) sin((2pi)/8) sin((3pi)/8) sin ((5pi)/8) sin ((6pi)/8) sin((7pi)/8) is :

Prove that: sin^(4)((pi)/(8))+sin^(4)((3 pi)/(8))+sin^(4)((5 pi)/(8))+sin^(4)((7 pi)/(8))=(3)/(2)

Prove that: sin((3pi)/(8)-5)cos((pi)/(8)+5)+cos((3pi)/(8)-5)sin((pi)/(8)+7)=1

Prove that "sin"(pi)/(14)"sin"(3pi)/(14)"sin"(5pi)/(14)"sin"(7pi)/(14)=(1)/(8)

Prove that cos^(4)pi/8+cos^(4)(3pi)/(8)+cos^(4)(5pi)/8+cos^(4)(7pi)/8=3/2

Prove (i) "sin"^(2)(pi)/(8)+"sin"^(2)(3pi)/(8)+"sin"^(2)(5pi)/(8)+"sin"^(2)(7pi)/(8)=2 (ii) [1+cotalpha-sec((pi)/(2)+alpha)] [1+cotalpha+sec((pi)/(2)+alpha)]=2cotalpha