Home
Class 11
MATHS
Express the following complex number in ...

Express the following complex number in the polar form:`(2+6sqrt(3)i)/(5+sqrt(3)i)`

A

`2(cos""(pi)/(4)+isin ""(pi)/(4))`

B

`sqrt2(cos""(pi)/(4)+isin ""(pi)/(4))`

C

`(cos""(pi)/(4)+isin ""(pi)/(4))`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To express the complex number \(\frac{2 + 6\sqrt{3}i}{5 + \sqrt{3}i}\) in polar form, we will follow these steps: ### Step 1: Multiply by the Conjugate To simplify the complex number, we multiply both the numerator and denominator by the conjugate of the denominator. The conjugate of \(5 + \sqrt{3}i\) is \(5 - \sqrt{3}i\). \[ z = \frac{(2 + 6\sqrt{3}i)(5 - \sqrt{3}i)}{(5 + \sqrt{3}i)(5 - \sqrt{3}i)} \] ### Step 2: Expand the Numerator Now, we will expand the numerator: \[ (2 + 6\sqrt{3}i)(5 - \sqrt{3}i) = 2 \cdot 5 + 2 \cdot (-\sqrt{3}i) + 6\sqrt{3}i \cdot 5 + 6\sqrt{3}i \cdot (-\sqrt{3}i) \] Calculating each term: - \(2 \cdot 5 = 10\) - \(2 \cdot (-\sqrt{3}i) = -2\sqrt{3}i\) - \(6\sqrt{3}i \cdot 5 = 30\sqrt{3}i\) - \(6\sqrt{3}i \cdot (-\sqrt{3}i) = -6 \cdot 3 = -18(-1) = 18\) Combining these results: \[ 10 + 18 + (30\sqrt{3} - 2\sqrt{3})i = 28 + 28\sqrt{3}i \] ### Step 3: Expand the Denominator Now we will expand the denominator: \[ (5 + \sqrt{3}i)(5 - \sqrt{3}i) = 5^2 - (\sqrt{3}i)^2 = 25 - 3(-1) = 25 + 3 = 28 \] ### Step 4: Simplify the Expression Now we can simplify the expression: \[ z = \frac{28 + 28\sqrt{3}i}{28} = 1 + \sqrt{3}i \] ### Step 5: Find the Modulus Next, we find the modulus of \(z\): \[ |z| = \sqrt{A^2 + B^2} = \sqrt{1^2 + (\sqrt{3})^2} = \sqrt{1 + 3} = \sqrt{4} = 2 \] ### Step 6: Find the Argument Now we find the argument \(\theta\): \[ \tan(\theta) = \frac{B}{A} = \frac{\sqrt{3}}{1} = \sqrt{3} \] This corresponds to \(\theta = \frac{\pi}{3}\) (since both \(A\) and \(B\) are positive, it lies in the first quadrant). ### Step 7: Write in Polar Form Finally, we can express \(z\) in polar form: \[ z = r(\cos \theta + i \sin \theta) = 2\left(\cos\frac{\pi}{3} + i \sin\frac{\pi}{3}\right) \] ### Final Answer Thus, the polar form of the complex number \(\frac{2 + 6\sqrt{3}i}{5 + \sqrt{3}i}\) is: \[ z = 2\left(\cos\frac{\pi}{3} + i \sin\frac{\pi}{3}\right) \] ---

To express the complex number \(\frac{2 + 6\sqrt{3}i}{5 + \sqrt{3}i}\) in polar form, we will follow these steps: ### Step 1: Multiply by the Conjugate To simplify the complex number, we multiply both the numerator and denominator by the conjugate of the denominator. The conjugate of \(5 + \sqrt{3}i\) is \(5 - \sqrt{3}i\). \[ z = \frac{(2 + 6\sqrt{3}i)(5 - \sqrt{3}i)}{(5 + \sqrt{3}i)(5 - \sqrt{3}i)} \] ...
Promotional Banner

Topper's Solved these Questions

  • COMBINATIONS

    RD SHARMA|Exercise Solved Examples And Exercises|117 Videos
  • DERIVATIVES

    RD SHARMA|Exercise Solved Examples And Exercises|236 Videos

Similar Questions

Explore conceptually related problems

Express the following complex number in the polar form: (1+i)/(1-i)

Write the following complex numbers in the polar form: -3sqrt(2)+3sqrt(2)i

Express the following complex numbers in the standard form a+ib:(5+sqrt(2)i)/(1-sqrt(2)i)

Express the following complex numbers in the standard form a+ib:((1+i)(1+sqrt(3)i))/(1-i)

Express the following complex number in the polar form: (i) (1+7i)/((2-i)^(2))( ii) (1+3i)/(1-2i)

Convert of the complex number in the polar form: sqrt(3)+i

Put the following numbers in the polar form: -1-sqrt(3)i

Put the following numbers in the polar form: (-16)/(1+i sqrt(3)

Put the following numbers in the polar form: -4+i4sqrt(3)

Express the following complex numbers in the standard form a+ib:(3-4i)/((4-2i)(1+i))

RD SHARMA-COMPLEX NUMBERS-Solved Examples And Exercises
  1. Find the modulus and principal argument of -4.

    Text Solution

    |

  2. Express the following complex number in the polar form:(1+i)/(1-i)

    Text Solution

    |

  3. Express the following complex number in the polar form:(2+6sqrt(3)i)/(...

    Text Solution

    |

  4. Put the complex number (1+7i)/((2-i)^2) in the form r(costheta+i\ sint...

    Text Solution

    |

  5. Find the modulus and argument of the following complex number and conv...

    Text Solution

    |

  6. Find the modulus and argument of the following complex number and conv...

    Text Solution

    |

  7. Find the modulus and argument of the following complex number and conv...

    Text Solution

    |

  8. For any two complex number z1a n d\ z2 prove that: |z1+z2|lt=|z1|+|z2|

    Text Solution

    |

  9. For any two complex number z1a n d\ z2 prove that: |z1-z2|lt=|z1|+|z2|

    Text Solution

    |

  10. For any two complex number z1a n d\ z2 prove that: |z1+z2|geq|z1|-|z2|

    Text Solution

    |

  11. For any two complex number z1a n d\ z2 prove that: |z1-z2|geq|z1|-|z2|

    Text Solution

    |

  12. Find the modulus and argument of the following complex number and henc...

    Text Solution

    |

  13. Find the modulus and argument of the following complex number and henc...

    Text Solution

    |

  14. Find the modulus and argument of the following complex number and henc...

    Text Solution

    |

  15. Find the modulus and argument of the following complex number and henc...

    Text Solution

    |

  16. Find the modulus and argument of the following complex number and henc...

    Text Solution

    |

  17. Find the modulus and argument of the following complex number and henc...

    Text Solution

    |

  18. Find the modulus and argument of the following complex number and henc...

    Text Solution

    |

  19. Find the modulus and argument of the following complex number and henc...

    Text Solution

    |

  20. Write (i^(25))^3 in polar form.

    Text Solution

    |