Home
Class 11
MATHS
The polar form of (i^(25))^3 is...

The polar form of `(i^(25))^3` is

A

`cos(pi/2)+isin(pi/2)`

B

`cospi+i sinpi`

C

`cospi-isinpi`

D

`cos(pi/2)- i sin(pi/2)`

Text Solution

Verified by Experts

The correct Answer is:
D

`cos(pi/2)- i sin(pi/2)`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COMBINATIONS

    RD SHARMA|Exercise Solved Examples And Exercises|117 Videos
  • DERIVATIVES

    RD SHARMA|Exercise Solved Examples And Exercises|236 Videos

Similar Questions

Explore conceptually related problems

Find the modulus and argument of each of the following complex numbers and hence express each of them in polar form: (i^(25))^(3)

Write the polar form of -(1)/(2)-(isqrt3)/2 (Where, i=sqrt(-1)).

Knowledge Check

  • The polar form of - 3 is

    A
    `(cospi+isinpi)`
    B
    `pm3(cospi+isinpi)`
    C
    `3(cospi+isinpi)`
    D
    `-3(cospi+isinpi)`
  • If Z = (1+7i)/((2-i)^(2)) then the polar form of z is

    A
    `sqrt2(cos"(3pi)/4-isin"" (3pi)/4)`
    B
    `sqrt2(cos"(3pi)/4+isin"" (3pi)/4)`
    C
    `sqrt2(cos"(7pi)/4+isin"" (7pi)/4)`
    D
    `sqrt2(cos"(7pi)/4-isin"" (7pi)/4)`
  • (i)The polar form of i+sqrt3 is

    A
    Purely real complex number
    B
    forth quadrant
    C
    First quadrant
    D
    `2(cos(pi)/(6)+isin(pi)/(6))`
  • Similar Questions

    Explore conceptually related problems

    Find the polar form of -2-i

    The polar form of sin theta-i cos theta is

    Convert the following in the polar form: (1+7i)/((2-i)^(2))

    Express the following complex number in the polar form: (i) (1+7i)/((2-i)^(2))( ii) (1+3i)/(1-2i)

    The polar form of the complex number (i^(25))^3 is (a) cos(pi/2)+isin(pi/2) (b) cospi+isinpi (c) cospi-isinpi (d) cos((3pi)/2)+isin((3pi)/2)