Home
Class 11
MATHS
If z=1/(1-cos theta-i sin theta), then R...

If `z=1/(1-cos theta-i sin theta),` then `Re(z)` is a. `0` b. `1/2` c. `cot(theta/2)` d. `1/2 cot (theta/2)`

Text Solution

AI Generated Solution

To find the real part of the complex number \( z = \frac{1}{1 - \cos \theta - i \sin \theta} \), we will follow these steps: ### Step 1: Multiply by the Conjugate To simplify \( z \), we multiply the numerator and the denominator by the conjugate of the denominator: \[ z = \frac{1}{1 - \cos \theta - i \sin \theta} \cdot \frac{1 - \cos \theta + i \sin \theta}{1 - \cos \theta + i \sin \theta} \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COMBINATIONS

    RD SHARMA|Exercise Solved Examples And Exercises|117 Videos
  • DERIVATIVES

    RD SHARMA|Exercise Solved Examples And Exercises|236 Videos

Similar Questions

Explore conceptually related problems

If a=cos theta+i sin theta, then (1+a)/(1-a) is equal to ( i) cot((theta)/(2))( ii) cot theta( iii) i cot((theta)/(2))( iv )i tan((theta)/(2))

If z=1-cos theta+i sin theta, then |z|=2(sin theta)/(2) b.2(sin theta)/(2)c.2|(sin theta)/(2)|d.2|(cos theta)/(2)|

Knowledge Check

  • (1 - cos^(2)theta)cot^(2)theta

    A
    `sec^(2)theta `
    B
    `cos^(2)theta`
    C
    `cosec^(2)theta`
    D
    `sin^(2)theta`
  • (csc theta - sin theta)(sec theta - cos theta)(tan theta+ cot theta)= A)1 B)0 C) -1 D) 2

    A
    1
    B
    0
    C
    -1
    D
    2
  • Solve : (sin theta)/(1+cos theta)+(1+cos theta)/(sin theta)=? A. tan theta B. cot theta C. (2)/(sin theta) D. (2)/(cos theta)

    A
    A
    B
    D
    C
    B
    D
    C
  • Similar Questions

    Explore conceptually related problems

    If a=cos theta+i sin theta, then (1+a)/(1-a)=(cot theta)/(2) b.cot theta c.i(cot theta)/(2)d*i(tan theta)/(2)

    If z=cos theta+i sin theta, then the value of (z^(2n)-1)/(z^(2n)+1)(A)i tan n theta(B)tan n theta(C)i cot n theta(D)-i tan n theta

    If alpha=cos theta+i sin theta, then (1+alpha)/(1-alpha) equals ( (i)cot theta(ii)i tan((theta)/(2))(iii)i cot((theta)/(2))(iv)cot((theta)/(2))

    Show that ((1 + cos theta - sin ^(2) theta)/( sin theta (1 + cos theta ))) = cot theta

    Prove that (1+cos theta)/(sin theta)=cot[(theta)/(2)]