Home
Class 11
MATHS
Prove the following: P(n , r)=ndotP(n-1,...

Prove the following: `P(n , r)=ndotP(n-1,\ r-1)`

Text Solution

Verified by Experts

We know, `n_(P_r)​=(n!​ )/((n−r)!) ..(1)`
`R.H.S. = (n−1)_(P_r)​+(n−1)_(P_(r−1))`
​=`((n−1)!​)/((n−r−1)!)+((n−1)!​)/((n−r)!)`
=`( ((n−1)!​)/((n−r−1)!)(1+r/(n−r)​)`
=` n(n−1)!​)/(((n−1)(n−r−1)!)`
=`(n!​ )/((n−r)!) ..(2)`
Hence from (1) and (2)
...
Promotional Banner

Topper's Solved these Questions

  • PARABOLA

    RD SHARMA|Exercise Solved Examples And Exercises|81 Videos
  • PROBABILITY

    RD SHARMA|Exercise Solved Examples And Exercises|280 Videos

Similar Questions

Explore conceptually related problems

Prove the following: P(n,r)=P(n-1,r)+rdot P(n-1,r-1)

Prove the following: P(n,n)=P(n,n-1)

P(n,r)+P(n-1,r-1)=

Prove the following by using the principle of mathematical induction for all n in Nvdotsa+ar+ar^(2)+...+ar^(n-1)=(a(r^(n)-1))/(r-1)

Prove :nPr=n(n-1)P(r-1)

Prove that: (i) ""^(n)P_(n)=""^(n)P_(n-1) " (ii) "^(n)P_(r)=n* ""^(n-1)P_(r-1) " (iii) "^(n-1)P_(r)+r* ""^(n-1)P_(r-1)=""^(n)P_(r)

Prove that : (i) (n!)/(r!)=n(n-1)(n-2)...(r+1) (ii) (n-r+1)*(n!)/((n-r+1)!)=(n!)/((n-r)!) (iii) (n!)/(r!(n-r)!)+(n!)/((r-1)!(n-r+1)!)=((n+1)!)/(r!(n-r+1)!)

Prove that: (i) (n!)/(r!) = n(n-1) (n-2)......(r+1) (ii) (n-r+1). (n!)/((n-r+1)!) = (n!)/((n-r)!)

Prove that (n!)/(r!)=n(n-1)(n-2)dots(r+1)

Prove that P(n;r)=nP_(r)=n(!)/(n-r)!