Home
Class 11
MATHS
Let r and n be positive integers such th...

Let `r` and `n` be positive integers such that `1 leq r leq n`. Then prove the following: `n+n-1 C_{r-1}=(n-r+1){ }^{n} C_{r-1}`

Text Solution

Verified by Experts

LHS `=n_{.}^{n-1} C_{r-1}`

`=frac{n(n-1) !}{(r-1) !(n-1-r+1) !}`

`=frac{n !}{(r-1) !(n-r) !}`

RHS = `(n-r+1)^{n} C_{r}`

`=(n-r+1) frac{n !}{(r-1) !(n-r+1) !}`

`=(n-r+1) frac{n !}{(r-1) !(n-r+1)(n-r) !}`

`=frac{n !}{(r-1) !(n-r) !}`

`therefore` LHS =RHS

Promotional Banner

Topper's Solved these Questions

  • BRIEF REVIEW OF CARTESIAN SYSTEM OF RECTANGULAR COORDINATES

    RD SHARMA|Exercise Solved Examples And Exercises|75 Videos
  • COMPLEX NUMBERS

    RD SHARMA|Exercise Solved Examples And Exercises|267 Videos

Similar Questions

Explore conceptually related problems

If n and r are integers such that 1

Notation + theorem :- Let r and n be the positive integers such that 1<=r<=n. Then no.of all permutations of n distinct things taken r at a time is given by (n)(n-1)(n-2)....(n-(r-1))

Let n and r be non negative integers such that 1<=r<=n* Then,^(n)C_(r)=(n)/(r)*^(n-1)C_(r-1)

If 1<=r<=n, then n^(n-1)C_(r)=(n-r+1)^(n)C_(r-1)

Let n be a positive integer, such that (1 + x + x^2)^n=a_0 +a_1x+ a_2 x^2+a_3 x^3+......a_(2n) x^(2n), Answer the following question: The value of a when (0 leq r leq n) is (A) a_(2n-r) (B) a_(n-r) (C) a_(2n) (D) n. a_(2n-1)

Let P (n) be the statement C_(r) le n! for 1 le r le n then P(n + 1) = ________

If n is a positive integer,then sum_(r=2)^(n)r(r-1)*C_(r) =

If n is a positive integer,then sum_(r=1)^(n)r^(2)*C_(r)=