Home
Class 11
MATHS
Let n\ a n d\ r be non negative integers...

Let `n\ a n d\ r` be non negative integers such that `1lt=rlt=ndot` Then, `\ ^n C_r=n/rdot\ \ ^(n-1)C_(r-1)\ dot`

Text Solution

Verified by Experts

`\ ^n C_r=n/rdot\ \ ^(n-1)C_(r-1)\ dot`
RHS=`n/rdot\ \ ^(n-1)C_(r-1)\ dot`
=`n/r*(n-1)!/(r-1)!*(n-1)-(r-1)!`
=`n/r*(n-1)!/(r-1)!*1/(n-1)-(r-1)!`
=`\ ^n C_r`
Promotional Banner

Topper's Solved these Questions

  • BRIEF REVIEW OF CARTESIAN SYSTEM OF RECTANGULAR COORDINATES

    RD SHARMA|Exercise Solved Examples And Exercises|75 Videos
  • COMPLEX NUMBERS

    RD SHARMA|Exercise Solved Examples And Exercises|267 Videos

Similar Questions

Explore conceptually related problems

Let n and r be no negative integers suych that r<=n. Then,^(n)C_(r)+^(n)C_(r-1)=^(n+1)C_(r)

If n and r are integers such that 1

If 1<=r<=n, then n^(n-1)C_(r)=(n-r+1)^(n)C_(r-1)

If m,n,r are positive integers such that r lt m,n, then ""^(m)C_(r)+""^(m)C_(r-1)""^(n)C_(1)+""^(m)C_(r-2)""^(n)C_(2)+...+ ""^(m)C_(1)""^(n)C_(r-1)+""^(n)C_(r) equals

Notation + theorem :- Let r and n be the positive integers such that 1<=r<=n. Then no.of all permutations of n distinct things taken r at a time is given by (n)(n-1)(n-2)....(n-(r-1))

Prove that .^(n)C_(r)+^(n)C_(r-1)=^(n+1)C_(r)

Verify that ""^(n)C_(r )=(n)/(r ) ""^(n-1)C_(r-1) where n=6 and r=3 .

Prove the following: P(n,r)=P(n-1,r)+rdot P(n-1,r-1)