Home
Class 11
MATHS
If 1lt=rlt=n , then \ n^(n-1)Cr=(n-r+1)\...

If `1lt=rlt=n ,` then `\ n^(n-1)C_r=(n-r+1)\ ^n C_(r-1)dot`

Text Solution

Verified by Experts

L.H.S $$=n\left[\frac{(n-1) !}{(r-1) !(n-1-(r-1)) !(n-1-r+1)}\right]$$ $$=\frac{(n-1) !}{(r-1) !(n-r) !}=\frac{n !}{(r-1) !(n-r) !} \cdots \cdot(1)$$ $$R.H.S ={ }^{(n-r+1)\left[n C_{r-1}\right]}$$ $$=(n-r+1)\left[\frac{n}{(r-1) !(n-r-1) !(n-r+1)}\right]$$ $$=(n-r+1)\left[\frac{n !}{(r-1) !(n-r+1) !}\right]$$ $$=\frac{(n-r+1) n !}{(r-1) !(n-r+1)(n-r) !}$$ $$=\frac{n !}{(r-1) !(n-r) !}$$ $$\Rightarrow 1)=(2)$$ ...
Promotional Banner

Topper's Solved these Questions

  • BRIEF REVIEW OF CARTESIAN SYSTEM OF RECTANGULAR COORDINATES

    RD SHARMA|Exercise Solved Examples And Exercises|75 Videos
  • COMPLEX NUMBERS

    RD SHARMA|Exercise Solved Examples And Exercises|267 Videos

Similar Questions

Explore conceptually related problems

Let n and r be non negative integers such that 1<=r<=n* Then,^(n)C_(r)=(n)/(r)*^(n-1)C_(r-1)

Prove by combinatorial argument that .^(n+1)C_(r)=^(n)C_(r)+^(n)C_(r-1)

Prove that .^(n)C_(r)+^(n)C_(r-1)=^(n+1)C_(r)

If .^(n)C_(r-1)=.^(n)C_(3r) , find r.

If f(x)=sum_(r=1)^(n) { r^(2) (""^(n)C_(r)- ^(n) C_(r-1))+ (2r+1) ^(n) C_(r)} and f(30)=30(2)^(lambda), then the value of lambda is

If m,n,r are positive integers such that r lt m,n, then ""^(m)C_(r)+""^(m)C_(r-1)""^(n)C_(1)+""^(m)C_(r-2)""^(n)C_(2)+...+ ""^(m)C_(1)""^(n)C_(r-1)+""^(n)C_(r) equals

Verify that ""^(n)C_(r )=(n)/(r ) ""^(n-1)C_(r-1) where n=6 and r=3 .