Home
Class 11
MATHS
If \ ^ C1=\ \ ^n 2 then 2m=n m=(n-1) d. ...

If `\ ^ C_1=\ \ ^n 2` then `2m=n` m=(n-1)` d. `2n=m(m-1)`

Answer

Step by step text solution for If \ ^ C_1=\ \ ^n 2 then 2m=n m=(n-1) d. 2n=m(m-1) by MATHS experts to help you in doubts & scoring excellent marks in Class 11 exams.

Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

If .^(m)C_(1)=.^(n)C_(2) prove that m=(1)/(2)n(n-1) .

Let g(x) = (x-1)^n/(log(cos^m(x-1))) ; 0 lt x lt 2 ,m and n and let p be the left hand derivative of |x - 1| at x = 1. If lim_(x->1) g(x) =p, then (A) n=1,m=1 (B) n=1,m=-1 (C) n=2,m=2 (D) n>2,m=n

Knowledge Check

  • If m, n, r are positive integers such that r lt m , n then ""^(m)C_(r )+""^(m)C_(r-1)" "^(n)C_(1)+""^(m)C_(r -2)" "^(n)C_(2)+ … +""^(m)C_(1)" "^(n)C_(r-1) +""^(n)C_(r ) equals

    A
    `(""^(n)C_(r ))^(2)`
    B
    `""^(m+n)C_(r )`
    C
    `""^(m+n)C_(r )+""^(m)C_(r )+""^(n)C_(r )`
    D
    none of these
  • If ( m + 1) = sqrt( n) + 3 the value of (1)/(2) (( m^(3) - 6 m^(2) + 1 2m - 8)/( sqrt(n))- n ) is

    A
    0
    B
    1
    C
    2
    D
    3
  • If f(x) = log ((m(x))/(n(x))), m(1) = n(1) = 1 and m'(1) = n'(1) = 2, " then" f'(1) is equal to

    A
    0
    B
    1
    C
    -1
    D
    None of these
  • Similar Questions

    Explore conceptually related problems

    If f(x)={m x+1\ \ \ ,\ \ \ xlt=pi/2,\ \ \ \ \ \sinx+n\ \ \ ,\ \ \ x >pi/2 is continuous at x=pi/2 , then m=1,\ \ n=0 (b) m=(npi)/2+1 (c) n=(mpi)/2 (d) m=n=pi/2

    Straight lines are drawn by joining m points on a straight line of n points on another line. Then excluding the given points, the number of point of intersections of the lines drawn is (no tow lines drawn are parallel and no these lines are concurrent). a. 4m n(m-1)(n-1) b. 1/2m n(m-1)(n-1) c. 1/2m^2n^2 d. 1/4m^2n^2

    The value of ^n C_1+^(n+1)C_2+^(n+2)C_3++^(n+m-1)C_m is equal to (a)^m+n C_(n-1) (b)^m+n C_(n-1) (c)^mC_(1)+^(m+1)C_2+^(m+2)C_3++^(m+n-1) (d)^m+1C_(m-1)

    Prove that : sum_(m=1)^n\ \ \ tan^(-1)((2m)/(m^4+m^2+2))=tan^(-1)((n^2+n)/(n^2+n+2))

    If S_n denotes the sum of first n terms of an A.P. such that (S_m)/(S_n)=(m^2)/(n^2), t h e n(a_m)/(a_n)= a.(2m+1)/(2n+1) b. (2m-1)/(2n-1) c. (m-1)/(n-1) d. (m+1)/(n+1)