Home
Class 12
MATHS
Show without expanding at any stage that...

Show without expanding at any stage that: `| (1,cosalpha-sinalpha, cosalpha+sinalpha),(1,cosbeta-sinbeta,cosbeta+sinbeta),(1, cosgamma-singamma,cosgamma+singamma)|`=2 `|(1,cosalpha, sinalpha),(1,cosbeta, sinbeta),(1,cosgamma,singamma)| `

Promotional Banner

Similar Questions

Explore conceptually related problems

Show without expanding at any stage that: [0,sinalpha-cosalpha],[-sinalpha,0,sinbeta],[cosalphas-sinbeta,0]|=0

Show without expanding at any stage that: [0,sinalpha-cosalpha],[-sinalpha,0,sinbeta],[cosalphas-sinbeta,0]|=0

[{:(sinalpha,cosalpha,sin(alpha+delta)),(sinbeta,cosbeta,sin(beta+delta)),(singamma,cosgamma,sin(gamma+delta)):}]=

Without expanding evaluate the determinant |(sinalpha,cosalpha,sin(alpha+delta)),(sinbeta,cosbeta,sin(beta+delta)),(singamma,cosgamma,sin(gamma+delta))|

Without expanding show that |(0,sinalpha, -cosalpha),(-sinalpha,0,sinbeta),(cosalpha, -sinbeta,0)| = 0

Without expanding evaluate the determinant |[sinalpha,cosalpha,sin(alpha+delta)],[sinbeta,cosbeta,sin(beta+delta)],[singamma,cosgamma,sin(gamma+delta)]|

Without expanding evaluate the determinant |[sinalpha,cosalpha,sin(alpha+delta)],[sinbeta,cosbeta,sin(beta+delta)],[singamma,cosgamma,sin(gamma+delta)]|

Without expanding evaluate the determinant |[sinalpha,cosalpha,sin(alpha+delta)],[sinbeta,cosbeta,sin(beta+delta)],[singamma,cosgamma,sin(gamma+delta)]|

Show that |[sinalpha, cosalpha, cos(alpha+delta)],[sinbeta, cosbeta, cos(beta+delta)],[singamma, cosgamma, cos(gamma+delta)]|=0

Show that |[sinalpha, cosalpha, cos(alpha+delta)],[sinbeta, cosbeta, cos(beta+delta)],[singamma, cosgamma, cos(gamma+delta)]|=0