Home
Class 11
MATHS
The equation of a circle with radius 5 a...

The equation of a circle with radius 5 and touching both the coordinate axes is y^2+-10 x+-10 y+5=0` `x^2+y^2+-10 x+-10 y=0` `x^2+y^2+-10 x+-10 y+25=0` `x^2+y^2+-10 x+-10 y+51=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

x^2+y^2-10x-10y+41=0 and x^2+y^2-22x-10y+137=0

The equation of the circle of radius 5 in the first quadrant which touches the x-axis and the line 3x-4y=0 is x^(2)+y^(2)-24x-y-25=0x^(2)+y^(2)-30x-10y+225=0x^(2)+y^(2)-16x-18y-64=0x^(2)+y^(2)-20x-12y+144=0

The equation of the parabola whose focus is (1,-1) and the directrix is x+y+7=0 is x^(2)+y^(2)-2xy-18x-10y=0x^(2)+y^(2)-18x-10y-45=0x^(2)-18x-10y-45=0x^(2)+y^(2)-2xy-18x-10y-4=0

I. x^(2) +20x + 4 = 50 -25x II. y^(2) - 10y - 24 = 0

Equation of a common chord of the circles x ^(2) + y ^(2) + 6x -10 y + 9=0 and x ^(2) + y ^(2) - 10 x + 6y + 25=0 is

The equation of the circle touching Y-axis at (0,3) and making intercept of 8 units on the axis (a) x^(2)+y^(2)-10x-6y-9=0 (b) x^(2)+y^(2)-10x-6y+9=0 (c) x^(2)+y^(2)+10x-6y-9=0 (d) x^(2)+y^(2)+10x+6y+9=0

x+y=10; 2x-3y=0

Equation of radical axis of the circles x^(2) + y^(2) - 3x - 4y + 5 = 0 and 2x^(2) + 2y^(2) - 10x - 12y + 12 = 0 is

Find the centre and radius of the circle 3x^2 + 3y^2 - 8x - 10y + 3=0

I. x^(2) - 5x - 14 = 0" "II. Y^(2) + 7y + 10 = 0