Home
Class 11
MATHS
If f is an even function, then prove tha...

If `f` is an even function, then prove that `lim_(x->0^-) f(x) = lim_(x->0^+) f(x)`

Promotional Banner

Topper's Solved these Questions

  • INTRODUCTIONS TO 3-D COORDINATE GEOMETRY

    RD SHARMA|Exercise Solved Examples And Exercises|114 Videos
  • LINEAR INEQUATIONS

    RD SHARMA|Exercise Solved Examples And Exercises|163 Videos

Similar Questions

Explore conceptually related problems

If f is an even function,then prove that lim_(x rarr0^(-))f(x)=lim_(x rarr0^(+))f(x)

If f is an even function, prove that lim_(xto0^(-)) (x)=lim_(xto0^(+)) f(x).

If |f(x)|lex^(2), then prove that lim_(xto0) (f(x))/(x)=0.

If f(x)=|x|, prove that lim_(x rarr0)f(x)=0

Left hand derivative and right hand derivative of a function f(x) at a point x=a are defined as f'(a^-)=lim_(h to 0^(+))(f(a)-f(a-h))/(h) =lim_(hto0^(+))(f(a+h)-f(a))/(h) andf'(a^(+))=lim_(h to 0^+)(f(a+h)-f(a))/(h) =lim_(hto0^(+))(f(a)-f(a+h))/(h) =lim_(hto0^(+))(f(a)-f(x))/(a-x) respectively. Let f be a twice differentiable function. We also know that derivative of a even function is odd function and derivative of an odd function is even function. The statement lim_(hto0)(f(-x)-f(-x-h))/(h)=lim_(hto0)(f(x)-f(x-h))/(-h) implies that for all x"inR ,

If f is an even function such that lim_(h rarr0)(f(h)-f(0))/(h) has some finite non-zero value,then prove that f(x) is not differentiable at x=0.

If f(x)=sgn(x)" and "g(x)=x^(3) ,then prove that lim_(xto0) f(x).g(x) exists though lim_(xto0) f(x) does not exist.

Given lim_(x rarr0)(f(x))/(x^(2))=2, where [.] denotes the greatest integer function,then lim_(x rarr0)[f(x)]=0lim_(x rarr0)[f(x)]=1lim_(x rarr0)[(f(x))/(x)] does not exist lim _(x rarr0)[(f(x))/(x)] exists

Let f:R rarr R be a function satisfying Lim_(xrarr0^(+))f(x)=2 , Lim_(xrarr0^(-)) f(x)=3 and f(0)=4 The value of (Lim_(xrarr0) f(x^(3)-x^(2)))/(Lim_(xrarr0) f(2x^(4)-x^(5)))=

RD SHARMA-LIMITS-All Questions
  1. Find the left hand and right hand limits of greatest integer function ...

    Text Solution

    |

  2. Prove that lim(x->a^+) [x]=[a] for all a in R, where [*] denotes the ...

    Text Solution

    |

  3. If f is an even function, then prove that lim(x->0^-) f(x) = lim(x->0^...

    Text Solution

    |

  4. Show that ("lim")(x->0)x/(|x|) does not exist.

    Text Solution

    |

  5. Find k so that ("lim")(x->2)\ f(x) may exist, where f(x)={2x+3,\ xlt=2...

    Text Solution

    |

  6. Show that ("lim")(x->0)1/x does not exist.

    Text Solution

    |

  7. Let f(x)={x+1,\ if\ x >0, x-1,\ if\ x<0dot Prove that ("lim")(x->1)\ f...

    Text Solution

    |

  8. Let f(x)=\ {x+5,\ if\ x >0x-4,\ if\ x<0 Prove that ("lim")(x->0)\ f(x)...

    Text Solution

    |

  9. Find ("lim")(x->3)\ f(x),\ w h e r e\ f(x)={4,\ if\ x >3x+1,\ if\ x<3

    Text Solution

    |

  10. Find lim(xrarr0)f(x)a n d(lim)(x-&gt;1)f(x),""""w h e r e""""f(x)=[2x+...

    Text Solution

    |

  11. Find (lim)(x->1)f(x),""w h e r e""f(x)=[x^2-1, xlt=1-x^2-1, x >1

    Text Solution

    |

  12. Evaluate ("lim")(x->0)f(x),\ w h e r e\ f(x)={(|x|)/x ,\ x!=0 0,\ x=0

    Text Solution

    |

  13. Find ("lim")(x->1^+)1/(x-1)dot

    Text Solution

    |

  14. Evaluate the following one sided limit: ("lim")(x->2^-)\ (x-3)/(x^2-4)

    Text Solution

    |

  15. Evaluate the following one sided limit: lim(x->-8^+)(2x)/(x+8)

    Text Solution

    |

  16. Evaluate the following one sided limit: ("lim")(x->pi//2^+)secx

    Text Solution

    |

  17. Evaluate the following one sided limit: ("lim")(x->-pi//2^+)(2-cotx)

    Text Solution

    |

  18. Evaluate the following one sided limit: ("lim")(x->2^-)\ (x-3)/(x^2-4)

    Text Solution

    |

  19. Evaluate the following one sided limit: ("lim")(x->0^+)2/(x^(1//5))

    Text Solution

    |

  20. Evaluate the following one sided limit: ("lim")(x->0^-)(x^2-3x+2)/(x^3...

    Text Solution

    |