Home
Class 11
MATHS
Evaluate the following limit: lim(x->0)(...

Evaluate the following limit: `lim_(x->0)(cos2x-1)/(cos x-1)`

Text Solution

Verified by Experts

`lim_(x->0)(cos2x-1)/(cos x-1)`
As `cos2x−1=1−2sin^2x−1=−2sin^2x`
`−2sin^2x=−2(1−cosx)(1+cosx)`
Then
`=lim_(x->0)(2(cosx+1)(cos x-1))/(cos x-1)`
`=2(cos 0 +1)`
`=4`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTRODUCTIONS TO 3-D COORDINATE GEOMETRY

    RD SHARMA|Exercise Solved Examples And Exercises|114 Videos
  • LINEAR INEQUATIONS

    RD SHARMA|Exercise Solved Examples And Exercises|163 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limits: lim_(xrarr0)(cos2x-1)/(cosx-1)

Evaluate the following limit: (lim)_(x->0)(cos2x-cos e c2x)/x

Evaluate the following limit: (lim)_(x->0)(1-cos x)/(x^2)

Evaluate the following limit: (lim)_(x->0)(1-cos m x)/(1-cos n x)

Evaluate the following limit: (lim)_(x->0)(1-cos xsqrt(cos2x))/(tan^2x)

Evaluate the following limit: (lim)_(x rarr0)(1-cos2x)/(cos2x-cos8x)

Evaluate the following limit: (lim)_(x->0)(1-"cos"(1-cos x))/(sin^4x)

Evaluate the following limit: (lim)_(x->0)(1-cos5x)/(3x^2)

lim_(x rarr0)(cos2x-1)/(cos x-1)

lim_(x rarr0)(cos2x-1)/(cos x-1)