Home
Class 11
MATHS
Write the value of lim(x->0)(sqrt(1-cos2...

Write the value of `lim_(x->0)(sqrt(1-cos2x))/x`

Text Solution

AI Generated Solution

To solve the limit \( \lim_{x \to 0} \frac{\sqrt{1 - \cos(2x)}}{x} \), we can follow these steps: ### Step 1: Use the identity for \( \cos(2x) \) We know that \( \cos(2x) = 1 - 2\sin^2(x) \). Therefore, we can rewrite \( 1 - \cos(2x) \) as: \[ 1 - \cos(2x) = 1 - (1 - 2\sin^2(x)) = 2\sin^2(x) \] ...
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTIONS TO 3-D COORDINATE GEOMETRY

    RD SHARMA|Exercise Solved Examples And Exercises|114 Videos
  • LINEAR INEQUATIONS

    RD SHARMA|Exercise Solved Examples And Exercises|163 Videos

Similar Questions

Explore conceptually related problems

the value of lim_(x rarr0)(sqrt(1-cos x))/(x)=

lim_(x rarr0)(sqrt(1-cos2x))/(x)

The value of lim_(xto0) (1-(cosx)sqrt(cos2x))/(x^(2)) is

The value of lim_(x to 0) (sqrt(1/2(1-cos^(2)x)))/x is

The value of lim_(xto2)sqrt(1-cos 2(x-2))/(x-2) , is

The value of lim_(xrarr0) (sqrt(1-cosx^(2)))/(1-cos x) is

lim_(x rarr0)(sqrt((1-cos2x)/(2)))/(x)