Home
Class 11
MATHS
Write the value of lim(x->0^-)("sin"[x])...

Write the value of `lim_(x->0^-)("sin"[x])/([x])`

Text Solution

Verified by Experts

`lim_(x->0^-)("sin"[x])/([x])`
Here `(x->0^-)` means `x=0-h` and `h to 0`
`=lim_(h->0)(sin[0-h])/([0-h])`
`=lim_(h to 0) (sin[-h]/[-h])`
`=(sin(-1))/(-1)`
`=(-sin1)/(-1)`
`=sin1`
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTIONS TO 3-D COORDINATE GEOMETRY

    RD SHARMA|Exercise Solved Examples And Exercises|114 Videos
  • LINEAR INEQUATIONS

    RD SHARMA|Exercise Solved Examples And Exercises|163 Videos

Similar Questions

Explore conceptually related problems

Write the value of (lim)_(x rarr0)(sin x^(0))/(x)

Write the value of (lim)_(x rarr0^(-))(sin x)/(sqrt(x))

What is the value of lim_(xto0) (sin|x|)/(x) ?

Write the value of (lim)_(x rarr pi)(sin x)/(x-pi)

The value of lim_(x rarr0)e^(-sin8(x)/(x))

the value of lim_(x rarr0)(tan x-sin x)/(x^(3))

The value of lim_(x rarr0)[((sin(|x|))/(x)] is

The value of lim x rarr0[(sin x)/(x)] is

Write the value of lim_(x rarr0)f(x), where f(x)={x(sin((1)/(x))+log(x^(2)));x!=0;0,x=0