Home
Class 11
MATHS
Write the value of lim(x->oo)(sin x\ )/x...

Write the value of `lim_(x->oo)(sin x\ )/x`

Text Solution

Verified by Experts

`lim_(x->oo)(sin x )/x`
Here if we put limits we get
`=(sin oo)/(oo) `
And we know that sin x is a periodic function ,
`implies -1 <=sinx<=1`
`implies sin (oo) in [-1,1]`
Then
`lim_(x->oo)(sin x )/x=[-1,1]/(oo)`
...
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTIONS TO 3-D COORDINATE GEOMETRY

    RD SHARMA|Exercise Solved Examples And Exercises|114 Videos
  • LINEAR INEQUATIONS

    RD SHARMA|Exercise Solved Examples And Exercises|163 Videos

Similar Questions

Explore conceptually related problems

Write the value of (lim)_(x rarr pi)(sin x)/(x-pi)

Write the value of (lim)_(x rarr0^(-))(sin[x])/([x])

Write the value of (lim)_(x rarr-oo)(3x+sqrt(9x^(2)-x))

The value of Lim_(x->oo)(xln(1+lnx/x))/lnx

The value of lim_(x rarr oo)((sin)[x])/([x])(where[*] denotes the greatest integer function ) is

The value of lim_(x->oo) (x + e^x)^(2/x) is-

The value of lim_(x->oo)(x/(x+(sqrt(x))/(x+(sqrt(x))/(x+(sqrt(x))/(x+(sqrt(x))/(x+......oo)))))) is

(lim)_(x->oo)(sin(1/x)+cos(1/x))^x

The value of lim_(x rarr-oo)(x^(4)sin((1)/(x))+x^(2))/(1+|x^(3)|)