Home
Class 11
MATHS
Write the value of lim(x->1^-)x-[x]...

Write the value of `lim_(x->1^-)x-[x]`

Text Solution

Verified by Experts

`lim_(x->1^-)x-[x]`
Here `x to 1^-` means `x=1-h` and `h to 0`
`=lim_(h->0)((1-h)-[1-h])`
`=1-0`
`=1`
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTIONS TO 3-D COORDINATE GEOMETRY

    RD SHARMA|Exercise Solved Examples And Exercises|114 Videos
  • LINEAR INEQUATIONS

    RD SHARMA|Exercise Solved Examples And Exercises|163 Videos

Similar Questions

Explore conceptually related problems

Write the value of (lim)_(x rarr0^(-))(sin[x])/([x])

Write the value of (lim)_(x rarr2)(|x-2|)/(x-2)

Write the value of (lim)_(x rarr0^(-))[x]

Write the value of (lim)_(x rarr a)(xf(a)-af(x))/(x-a)

Write the value of lim_(x rarr0)f(x), where f(x)={x(sin((1)/(x))+log(x^(2)));x!=0;0,x=0

Write the value of (lim)_(x rarr0^(+))[x]

Write the value of (lim)_(x rarr oo)(s in x)/(x)

Write the value of (lim)_(x rarr pi)(sin x)/(x-pi)

Write the value of (lim)_(x rarr0)(s in x)/(sqrt(1+x)-1)