Home
Class 11
MATHS
Write the value of lim(x->2)(|x-2|)/(x-2...

Write the value of `lim_(x->2)(|x-2|)/(x-2)`

Text Solution

AI Generated Solution

To solve the limit \( \lim_{x \to 2} \frac{|x - 2|}{x - 2} \), we need to evaluate the left-hand limit (LHL) and the right-hand limit (RHL) separately due to the absolute value in the expression. ### Step 1: Evaluate the Left-Hand Limit (LHL) The left-hand limit as \( x \) approaches 2 from the left (denoted as \( 2^- \)) can be expressed as: \[ \lim_{x \to 2^-} \frac{|x - 2|}{x - 2} \] ...
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTIONS TO 3-D COORDINATE GEOMETRY

    RD SHARMA|Exercise Solved Examples And Exercises|114 Videos
  • LINEAR INEQUATIONS

    RD SHARMA|Exercise Solved Examples And Exercises|163 Videos

Similar Questions

Explore conceptually related problems

What is the value of lim_(xtooo) ((x-2)/(x+2))^(x+2) ?

Write the value of (lim)_(x rarr pi/2)(2x-pi)/(cos x)

Find the value of lim_(x rarr1)(x-1)/(2x^(2)-7x+5)

Obtain the value of lim_(x rarr4)(x^(2)-16)/(x^(3)-x^(2)-10x-8)

Find the value of lim_(x rarr0)(10^(x)-2^(x)-5^(x)+1)/(x^(2))

Write the value of (lim)_(x rarr-oo)(3x+sqrt(9x^(2)-x))

the value of lim_(x rarr2^(-))({x+(x-[x]^(2))}) is

The value of lim_(xrarr0) (e^x-(x+x))/(x^2) ,is