Home
Class 11
MATHS
lim(x->0)(|sin x|)/x is a. 1 b . -1 c. 0...

`lim_(x->0)(|sin x|)/x` is a. 1 b . -1 c. 0 d. none of these

Text Solution

Verified by Experts

We have given `lim_(x->0)(|sin x|)/x`
Then,
L.H.L=`lim_(x->0)(-sin x)/x`
L.H.L=`-lim_(x->0)(sin x)/x`
L.H.L.=`-1`
R.H.L=`lim_(x->0)(sin x)/x`
R.H.L.=`1`
L.H.L `ne` R.H.L
...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTRODUCTIONS TO 3-D COORDINATE GEOMETRY

    RD SHARMA|Exercise Solved Examples And Exercises|114 Videos
  • LINEAR INEQUATIONS

    RD SHARMA|Exercise Solved Examples And Exercises|163 Videos

Similar Questions

Explore conceptually related problems

The (lim)_(x->0)(cos x)^(cotx) is -1 b. 1 c. 0 d. none of these

If f(x)={xsin1/x , x!=0 0, x=0 , then (lim)_(x->0)f(x) equals a. 1 b . 0 c. -1 d. none of these

lim_(x rarr0)(sin x)/(x)=1

(lim)_(x rarr oo)(|x|)/(x) is equal to a.1b*-1c.0d . none of these

If f(x)={("sin"[x])/([x]),for[x]!=0 0,for[x]=0,w h e r e[x] denotes the greatest integer less than or equal to x , then ("lim")_(xvec0)f(x) is 1 (b) 0 (c) -1 (d) none of these

(lim)_(xvec0)[(sin^(-1)x)/(tan^(-1)x)]= (where [.] denotes the greatest integer function) a. 0 b. 1 c. -1 d. none of these

lim_(x rarr0)(e^(sin x)-1)/(x)

lim_(x rarr0)(e^(sin x)-1)/(x)

If xe^(xy)-y=sin^(2)x then (dy)/(dx) at x=0 is a.0b . 1c.-1d .none of these

The value of lim_(x rarr0)(sqrt((1)/(2)(1-cos2x)))/(x) is (a) 1(b)-1(c)0(d)none of these