Home
Class 11
MATHS
Solve the following quadratic: x^2+x+1/(...

Solve the following quadratic: `x^2+x+1/(sqrt(2))=0`

Text Solution

Verified by Experts

The correct Answer is:
`x=frac{-1-sqrt{1-2 sqrt{2}}}{2}`

`x^{2}+x+\frac{1}{\sqrt{2}}=0`
Here, `a=1, b=1, c=\frac{1}{\sqrt{2}}` $$ \mathrm{x}=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}} $$ $$ \Rightarrow x=\frac{-1 \pm \sqrt{1^{2}-4(1)\left(\frac{1}{\sqrt{2}}\right)}}{2(1)} ...
Promotional Banner

Topper's Solved these Questions

  • PROBABILITY

    RD SHARMA|Exercise Solved Examples And Exercises|280 Videos
  • RELATIONS

    RD SHARMA|Exercise Solved Examples And Exercises|118 Videos

Similar Questions

Explore conceptually related problems

Solve the following quadratic: x^(2)+(x)/(sqrt(2))+1=0

Solve the following quadratic: x^(2)+x+1=0

Solve the following quadratic: x^(2)-x+1=0

Solve the following quadratic: 4x^(2)+1=0

Solve the following quadratic: 2x^(2)+x+1=0

Solve the following quadratic: x^(2)+2x+2=0

Solve the following quadratic: -x^(2)+x-2=0

Solve the following quadratic: x^(2)-4x+7=0

Solve the following quadratic: 21x^(2)+9x+1=0

Solve the following quadratic: 17x^(2)-8x+1=0