Home
Class 11
MATHS
Solve sqrt(5)x^2+x+sqrt(5)=0 ....

Solve `sqrt(5)x^2+x+sqrt(5)=0` .

Text Solution

Verified by Experts

The correct Answer is:
`x=frac{-1-sqrt{19} i}{2 sqrt{5}}`

Given that quadratric equation is `\sqrt{5}x^{2}+x+\sqrt{5}=0`
[If given qudratics equation a `a^{2}+b x+c=0, then x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}` ]

Then we compare given quadratic equation with standrad form, we get `a = \sqrt{5}, b=1, c=\sqrt{5}`, then

\begin{aligned} &x=\frac{-1 \pm \sqrt{1-(4 \times \sqrt{5} \times \sqrt{5})}}{2 \sqrt{5}} \\ ...
Promotional Banner

Topper's Solved these Questions

  • PROBABILITY

    RD SHARMA|Exercise Solved Examples And Exercises|280 Videos
  • RELATIONS

    RD SHARMA|Exercise Solved Examples And Exercises|118 Videos

Similar Questions

Explore conceptually related problems

Solve sqrt(2)x^(2)+7x+5sqrt(2)=0

sqrt(5)x^(2)+2x-3sqrt(5)

Solve the equation by using the general expression for roots of a quadratic equation: sqrt(5)x^(2)+x+sqrt(5)=0

Solve sqrt(x+65) + sqrt(5-x) = 4

Solve sqrt(2)sqrt(3)sqrt(5)

Solve sqrt(x-2)(x^(2)-4x-5)=0

Solve sqrt(5x^(2)-6x+8)-sqrt(5x^(2)-6x-7)=1

Solve :sqrt(2x-6)+sqrt(x+4)=5

Solve: 4sqrt(3)x^(2)+5x-2sqrt(3)=0.

2sqrt(3)x^(2)+x-5sqrt(3)=0