Home
Class 12
MATHS
Let f:RtoR be a differntiable function s...

Let `f:RtoR` be a differntiable function satisfying `f(x)=x^(2)+3int_(0)^(x)e^(-t^(3)).f(x-t^(3))dt`. Then find `f(x)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f:RtoR be a differntiable function satisfying f(x)=x^(2)+3int_(0)^(x^(1/3))e^(-t^(3)).f(x-t^(3))dt . Then find f'(x) .

Let f:R rarr R be a differentiabe function satisfying f(x)=x^(2)+3int_(0)^(x^(1/3))e^(-t^3)t^(2)*f(x-t^(3))dt Then find f(x) is

Let f:RtoR be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt . y=f(x) is

Let f:RtoR be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt . y=f(x) is

Let f:RtoR be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt . y=f(x) is

if f be a differentiable function such that f(x) =x^(2)int_(0)^(x)e^(-t)f(x-t). dt. Then f(x) =

Let f:RtoR be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt . f(x) increases for

Let f:RtoR be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt . f(x) increases for

Let f:RtoR be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt . f(x) increases for