Home
Class 10
MATHS
Prove that cos(pi/4-x) cos (pi/4+x)=1/2-...

Prove that `cos(pi/4-x) cos (pi/4+x)=1/2-sin^2x`

Text Solution

Verified by Experts

`[cospi/4cosx+sinpi/4sinx][cospi/4cosx-sinpi/4sinx]`
`cos^2pi/4cos^2x-sin^2pi/4sin^2x`
`1/2(1-sin^2x)-1/2sin^2x`
`1/2-1/2sin^2x-1/2sin^2x`
`1/2-sin^2x`.
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

Prove that cos (pi/4-x) cos (pi/4-y)- sin (pi/4-x) sin(pi/4-y) =sin (x+y)

Prove that cos(pi/4-x)cos(pi/4-y)-sin(pi/4-x)sin(pi/4-y)=sin(x+y)

Prove that: cos(pi/4-x)cos(pi/4-y)-sin(pi/4-x)sin(pi/4-y)=sin(x+y)

Prove that cos((pi)/(4)-x)cos((pi)/(4)-y)-sin((pi)/(4)-x)sin((pi)/(4)-y)=sin(x+y)

Prove that: cos((pi)/(4)-x)cos((pi)/(4)-y)-sin((pi)/(4)-x)sin((pi)/(4)-y)=sin(x+y)

Prove that cos ( pi/4 +x)+cos ( pi/4 - x) = sqrt(2)cos x

Prove that cos ((3pi)/(4)+x)-cos ((3pi)/(4)-x)=-sqrt2 sin x

Using application of trignometric formulas prove that (i)cos(pi/4+x)+cos(pi/4-x)=sqrt2cos x(i1)sin(7pi/12)cos(pi/4)-cos(7pi/12)sin(pi/4)

Prove that: cos(pi/4+x)+cos(pi/4-x)=sqrt(2)\ cos x

Prove that cos ((pi)/(4) + x) + cos ((pi)/(4) -x) = sqrt2 cos x