Home
Class 12
MATHS
यदि y=x^(x) तो सिद्ध कीजिये कि (d^(2)y)/...

यदि `y=x^(x)` तो सिद्ध कीजिये कि `(d^(2)y)/(dx^(2))-1/y((dy)/(dx))^(2)-y=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

x(d^(2)y)/(dx^(2))+(dy)/(dx)+x=0

If y=x^(x) , prove that: (d^(2)y)/(dx^(2))-1/y((dy)/(dx))^(2) - y/x=0

if y=x^(x), then prove (d^(2)y)/(dx^(2))-(1)/(y)((dy)/(dx))^(2)-(y)/(x)=0

If y=x^(x), prove that (d^(2)y)/(dx^(2))-(1)/(y)((dy)/(dx))^(2)-(y)/(x)=0

If y=x^(x) , prove that (d^(2)y)/(dx^(2))-(1)/(y)((dy)/(dx))^(2)-(y)/(x)=0 .

If y=x^(x) , then prove that (d^(2)y)/(dx^(2))-(1)/(y)((dy)/(dx))^(2)-(y)/(x)=0

If y=x^x , prove that (d^2y)/(dx^2)-1/y((dy)/(dx))^2-y/x=0

If y=x^x , prove that (d^2y)/(dx^2)-1/y((dy)/(dx))^2-y/x=0

If y=x^x , prove that (d^2y)/(dx^2)-1/y((dy)/(dx))^2-y/x=0