Home
Class 12
MATHS
The largest negative integer for which (...

The largest negative integer for which `((x-4)(x-2))/((x-1)(x-5))>0` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The largest negative integer which satisfies (x^2-1)/((x-2)(x-3))>0 is a. -4 b. -3 c. -2 d. -1

The largest negative integer which satisfies (x^2-1)/((x-2)(x-3))>0 is a. -4 b. -3 c. -2 d. -1

The largest negative integer which satisfies (x^2-1)/((x-2)(x-3))>0 is

the largest negative integer which satisfies (x^2-1)/((x-2)(x-3))>0

the largest negative integer which satisfies (x^2-1)/((x-2)(x-3))>0

The largest negative integer that satisfies (x^(2)-1)/((x-2)(x-3))>0 is

The largest value of non negative integer a for which lim_(x->1){(-a x+sin(x-1)+a]/(x+sin(x-1)-1)}^((1-x)/(1-sqrt(x)))=1/4

The largets value of non negative integer for which lim_(x->1){(-a x+sin(x-1)+a]1-sqrt(x))/(x+sin(x-1)-1)}^((1-x)/(1-sqrt(x)))=1/4

The largets value of non negative integer for which lim_(x->1){(-a x+sin(x-1)+a)/(x+sin(x-1)-1)}^((1-x)/(1-sqrt(x)))=1/4

The largets value of non negative integer for which lim_(x->1){(-a x+sin(x-1)+a)/(x+sin(x-1)-1)}^((1-x)/(1-sqrt(x)))=1/4