Home
Class 11
PHYSICS
The equation of SHM of a particle is (d^...

The equation of SHM of a particle is `(d^2y)/(dt^2)+ky=0`, where k is a positive constant. The time period of motion is

A

`(2pi)/(sqrt(k))`

B

`(2pi)/k`

C

`2pik`

D

`2pisqrt(k)`

Text Solution

Verified by Experts

The correct Answer is:
A

Compare with equation of SHM
`k= omega^(2)`
`T=(2pi)/(sqrt(k))`
Promotional Banner

Topper's Solved these Questions

  • SEMICONDUCTORS

    RESONANCE|Exercise Exercise|29 Videos
  • SOUND WAVES

    RESONANCE|Exercise Exercise- 3 PART - II|1 Videos

Similar Questions

Explore conceptually related problems

The equation of SHM of a particle is given as 2(d^(2)x)/(dt^(2))+32x=0 where x is the displacement from the mean position. The period of its oscillation ( in seconds) is -

The equation of S.H.M. of a particle is a+4pi^(2)x=0 , where a is instantaneous linear acceleration at displacement x. Then the frequency of motion is

The equation of motion of a particle executing SHM is ((d^2 x)/(dt^2))+kx=0 . The time period of the particle will be :

The equation of motion of a particle executing SHM is (k is a positive constant)

The equation of motion of particle is given by (dp)/(dt) +m omega^(2) y =0 where P is momentum and y is its position. Then the particle

A particle moves in the xy plane with a constant acceleration omega directed along the negative y-axis. The equation of motion of particle has the form y = cx -dx^(2) , where c and d are positive constants. Find the velocity of the particle at the origin of coordinates.

The equation of motion of a particle of mass 1g is (d^(2)x)/(dt^(2)) + pi^(2)x = 0 , where x is displacement (in m) from mean position. The frequency of oscillation is (in Hz)

The differential equation representing the S.H.M. of particle is [16 (d^2y) / dt^2+ 9y =0] If particle is at mean position initially, then time taken by the particle to reach half of its amplitude first time will be

A sinple harmonic motion is represented by (d^2x)/(dt^2)+kx=0 , where k is a constant of the motion. Find its time period.

RESONANCE-SIMPLE HARMONIC MOTION-Exercise
  1. For a simple harmonic vibrator frequency n, the frequency of kinetic e...

    Text Solution

    |

  2. A particle is executing SHM with an amplitude 4 cm. the displacment at...

    Text Solution

    |

  3. For a particle executing S.H.M. which of the following statements hold...

    Text Solution

    |

  4. The equation of SHM of a particle is (d^2y)/(dt^2)+ky=0, where k is a ...

    Text Solution

    |

  5. The total energy of the body excuting S.H.M. is E . Then the kinetic e...

    Text Solution

    |

  6. A linear harmonic oscillator of force constant 2 xx 10^6 N//m and ampl...

    Text Solution

    |

  7. A particle excuting S.H.M. of amplitude 4 cm and T = 4 sec .The time t...

    Text Solution

    |

  8. The potential energy of a particle execuring S.H.M. is 2.5 J, when its...

    Text Solution

    |

  9. A body of mass m is suspended from three springs as shown in figure. I...

    Text Solution

    |

  10. One mass m is suspended from a spring. Time period of oscilation is T....

    Text Solution

    |

  11. A spring has a certain mass suspended from it and its period for verti...

    Text Solution

    |

  12. Two objects A and B of equal mass are suspended from two springs const...

    Text Solution

    |

  13. If the period of oscillation of mass M suspended from a spring is one ...

    Text Solution

    |

  14. A simple pendulum suspended from the ceilling of a stationary trolley ...

    Text Solution

    |

  15. If length of simple pendulum is increased by 6% then percentage change...

    Text Solution

    |

  16. A man measures the period of a simple pendulum inside a stationary lif...

    Text Solution

    |

  17. In case of a forced vibration the resonance wave becomes very sharp wh...

    Text Solution

    |

  18. The amplitude of damped oscillator becomes half in one minute. The amp...

    Text Solution

    |

  19. Statement-1: kinetic energy of SHM at mean position is equal to potent...

    Text Solution

    |

  20. Statement-1 : Frequency of kinetic energy of SHM of double that of fre...

    Text Solution

    |