Home
Class 12
MATHS
[ Let f and g be two real valued functio...

[ Let f and g be two real valued functions and S={x|f(x)=0} and T={x|g(x)=0}, then S nn T represent the set of roots of [ (a) f(x)g(x)=0, (b) f(x)^(2)+g(x)^(2)=0 (c) f(x)+g(x)=0, (d) (f(x))/(g(x))=0]]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f (x), g(x) be two real valued functions then the function h(x) =2 max {f(x)-g(x), 0} is equal to :

Let f (x), g(x) be two real valued functions then the function h(x) =2 max {f(x)-g(x), 0} is equal to :

If f and g are continuous functions on [0,a] satisfying f(x)=(a-x) and g(x)+g(a-x)=2 , then show that int_(0)^(a)f(x)g(x)dx=int_(0)^(a)f(x)dx .

If f and g are continuous functions on [0,a] such that f(x)=f(a-x) and g(x)+g(a-x)=2 then show that int_(0)^(a)f(x)g(x)dx=int_(0)^(a)f(x)dx

If f(x) and g(f) are two differentiable functions and g(x)!=0, then show trht (f(x))/(g(x)) is also differentiable (d)/(dx){(f(x))/(g(x))}=(g(x)(d)/(pi){f(x)}-g(x)(d)/(x){g(x)})/([g(x)]^(2))

Statement-1 If A = {x |g(x) = 0} and B = {x| f(x) = 0}, then A nn B be a root of {f(x)}^(2) + {g(x)}^(2)=0 Statement-2 x inAnnBimpliesx inAorx inB .

Statement-1 If A = {x |g(x) = 0} and B = {x| f(x) = 0}, then A nn B be a root of {f(x)}^(2) + {g(x)}^(2)=0 Statement-2 x inAnnBimpliesx inAorx inB .

Statement-1 If A = {x |g(x) = 0} and B = {x| f(x) = 0}, then A nn B be a root of {f(x)}^(2) + {g(x)}^(2)=0 Statement-2 x inAnnBimpliesx inAorx inB .