Home
Class 12
MATHS
Iff(2-x)=f(2+x)a n df(4-x)=f(4+x) for a...

`Iff(2-x)=f(2+x)a n df(4-x)=f(4+x)` for all `xa n df(x)` is a function for which `int_0^2f(x)dx=5,t h e nint_0^(50)f(x)dx` is equal to 125 (b) `int_(-4)^(46)f(x)dx` `int_1^(51)f(x)dx` (d) `int_2^(52)f(x)dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

Iff(2-x)=f(2+x)a n df(4-x)=f(4+x) for all xa n df(x) is a function for which int_0^2f(x)dx=5,t h e nint_0^(50)f(x)dx is equal to (a)125 (b) int_(-4)^(46)f(x)dx (c) int_1^(51)f(x)dx (d) int_2^(52)f(x)dx

If f(2-x)=f(2+x) and f(4-x)=f(4+x) for all x and f(x) is a function for which int_(0)^(2)f(x)dx=5, then int_(0)^(50)f(x)dx is equal to 125 (b) int_(-4)^(46)f(x)dx int_(1)^(51)f(x)dx(d)int_(2)^(52)f(x)dx

If f(2-x)=f(2+x) and f(4-x)=f(4+x) for all x and f(x) is a function for which int_0^2 f(x)dx=5 , then int_0^(50)f(x)dx is equal to

If f(2-x)=f(2+x) and f(4-x)=f(4+x) for all x and f(x) is a function for which int_0^2 f(x)dx=5 , then int_0^(50)f(x)dx is equal to

int_(0)^(a)f(x)dx=int_(a)^(0)f(a-x)dx .

If int f(x)dx=F(x), then int x^(3)f(x^(2))dx is equal to:

prove that : int_(0)^(2a) f(x)dx = int_(0)^(a) f(x)dx + int_(0)^(a)f(2a-x)dx

int_(0)^(2a)f(x)dx=int_(0)^(a)f(x)dx+int_(0)^(a)f(2a-x)dx .

Let f(x)=f(a-x) and g(x)+g(a-x)=4 then int_0^af(x)g(x)dx is equal to (A) 2int_0^af(x)dx (B) int_0^af(x)dx (C) 4int_0^af(x)dx (D) 0