Home
Class 9
MATHS
(a^(29))" Prove that: "(a+b)^(3)+(b+c)^(...

(a^(29))" Prove that: "(a+b)^(3)+(b+c)^(3)+(c+a)^(3)-3(a+b)(b+c)(c+a)=2(a^(3)+b^(3)+c^(3)-3abc)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (a+b+c)^(3)-a^(3)-b^(3)-c^(3)=3(a+b)(b+c)(c+a) .

Prove that (a+b+c)^(3)-a^(3)-b^(3)-c^(3)=3(a+b)(b+c)(c+a) .

Prove that : (a+b)^3+(b+c)^3+(c+a)^3-3(a+b)(b+c)(c+a)=2(a^3+b^3+c^3-3a b c)

Prove that : (a+b)^3+(b+c)^3+(c+a)^3-3(a+b)(b+c)(c+a)=2(a^3+b^3+c^3-3a b c)

Prove that (a+b+c)^(3)-a^(3)-b^(3)-c^(3)=3(a+b)(b+c)(c+a)

Prove that :(a+b+c)^(3)-a^(3)-b^(3)-c^(3)=3(a+b)(b+c)(c+a)

If 2s=a+b+c, prove that (s-a)^(3)+(s-b)^(3)+(s-c)^(3)-3(s-a)(s-b)(s-c)=(1)/(2)(a^(3)+b^(3)+c^(3)-3abc)

Prove that (a+b+c)^(3) =a^(3)+b^(3)+c^(3)+3(b+c) (c+a) (a+b)

Prove that (a+c)^3-(b+c)^3-(a-b)^3=3(a+c)(b+c)(a-b)

Prove that (b+c)^3+(c+a)^3+(a+b)^3-3(b+c)(c+a)(a+b) =2(a^3+b^3+c^3-3abc)