Home
Class 11
MATHS
f(x)=[[1,1],[0,2]]th aA^(8)-2^(8)...

f(x)=[[1,1],[0,2]]th aA^(8)-2^(8)

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=x^(2)+4x-5andA=[(1,2),(4,-3)] , then f(A) is equal to a) [(0,-4),(8,8)] b) [(2,1),(2,0)] c) [(1,1),(1,0)] d) [(8,4),(8,0)]

If f(x)=x^2+4x-5 and A=[(1,2),(4,-3)] then f(A)= (A) [(0,-4),(8,8)] (B) [(0,-4),(8,8)] (C) [(1,1),(1,0)] (D) [(8,4),(8,0)]

If A = {:[(1,0),(1,1)]:} and A^(8) =aA+bI , then (a,b) =

If A = [(1,0),(1,1)] and A^(8) = aA + bI , then (a,b) =

Let f(x)=tan^(-1)(1/2 tan2x)+tan^(-1)(cotx)+tan^(-1)(cot^3x) then (1) f((3 pi)/8)=pi (2) f(pi/8)=0 (3) f(pi/8) =pi (4) f((3pi)/8)=0

If f(x) is a continuous function such that f(x)|0,AA x in[2,10] and int_(4)^(8)f(x)dx=0 then find

lf f'(x) > 0,f"(x)>0AA x in (0,1) and f(0)=0,f(1)=1 ,then prove that f(x)f^-1(x) lt x^2AA x in (0,1)

If (x)+f(x+4)=f(x+2)+f(x+6)AA x in R, and f(5)=10 then sum_(r=1)^(100)f(5+8r) equal to

Let f be a differentiable function satisfying f(x+2y)=2yf(x)+xf(y)-3xy+1 AA x , y in R such that f'(0)=1 ,then value of f(8) is equal

Let f(x) lt 0 AA x in (-oo, 0) and f (x) gt 0 ,AA x in (0,oo) also f (0)=0, Again f'(x) lt 0 ,AA x in (-oo, -1) and f '(x) gt 0, AA x in (-1,oo) also f '(-1)=0 given lim _(x to -oo) f (x)=0 and lim _(x to oo) f (x)=oo and function is twice differentiable. If f'(x) lt 0 AA x in (0,oo)and f'(0)=1 then number of solutions of equation f (x)=x ^(2) is : (a) 1 (b) 2 (c) 3 (d) 4